FACULTY OF ENGINEERING

B.E. $4 / 4$ (M/P) I-Semester (Main) Examination, November / December 2012

Subject : Finite Element Analysis

Time : 3 Hours
Max. Marks: 75
Note: Answer all questions of Part - A and answer any five questions from Part-B.

$$
\begin{equation*}
\text { PART - A (} 25 \text { Marks) } \tag{2}
\end{equation*}
$$

1. Define equilibrium and compatibility conditions.
2. Derive quadratic shape functions for I-D element in global coordinates.
3. What is plane stress? Write ' D ' matrix.
4. Define (a) Virtual displacement (b) potential energy
5. Write the stiffness matrix of a frame element.
6. Write the equivalent load vector of a beam subjected to triangular load.
7. The shape functions in triangular element are 0.3 and 0.2 . The nodal displacements are $\{0.0,0.01,0.02,0.03,0.01,0.0\}^{\top}, \mathrm{mm}$, find the displacement at any point in the triangle.
8. If the torque on node 1 is $1000 \mathrm{~N}-\mathrm{M}$ of a circular shaft of 10 mm dia and length of 2 m , find the nodal twists of $\mathrm{G}=0.8 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$.
9. What is convergency? Explain.
10. Derive capacitance matrix for rod.
PART - B (5x10=50 Marks)
11. Determine the nodal (figure1) displacements the element strains and stresses and the reaction forces if

Fig. 1
$\mathrm{A}=0.0001 \mathrm{~m}^{2}, \mathrm{E}=200 \mathrm{GPa}, \mathrm{P}=10^{5} \mathrm{~N}, \alpha=6 \times 10^{-6} /{ }^{\circ} \mathrm{C}$ and subject to a uniform temperature load of $\Delta \mathrm{T}=100^{\circ} \mathrm{C}$.
12. For the plane truss shown in figure 2. Determine the nodal displacement element stresses and reaction forces if $A=1 \times 10^{-4} \mathrm{~m}^{2}, \mathrm{E}=200 \mathrm{GPa}$.

Fig. 2
13. For the beam shown in figure 3. Determine the max displacement and the reaction forces and moments if $\mathrm{E}=200 \mathrm{GPa}$.

Fig. 3

..2.

14. Derive strain-displacement Matrix for
(i) Axi symmetric Triangular element
(ii) Constant strain Triangle
15.(a) For the 4-noded qudrilateral element find the displacement at point
$\mathrm{P}\left(\mathcal{\zeta}^{2}=-0.5, \mathrm{n}=-0.4\right)$ if the noded displacements are
$\mathrm{q}=\{0.001,0.0,0.0,-0.002,0.0,-0.01,-0.001,+0.003\}^{\top} \mathrm{mm}$.
(b) Find $I_{\xi}=\int_{-1}^{1}\left(\xi^{2}+3 \xi-10.0\right) \mathrm{d} \xi$ using

Gaussian quadrature (for $n=1, \xi=0.0$, $w=2.0$, for $n=2, \xi= \pm 0.577$, $w_{1}=w_{2}=1.0$) and compare the solution with numerical integration.
16. For the rod shown in figure 4 subjected to convection and heat flux, determine the temperature distribution if thermal conductivity is $50 \mathrm{w} / \mathrm{cm}^{\circ} \mathrm{C}$.

Fig. 4
17. Determine the natural frequencies of a cantilever beam as shown in figure $5 \mathrm{E}=200$ $\mathrm{GPa}, \mathrm{s}=7800 \mathrm{~kg} / \mathrm{m}^{3}$.

Fig. 5
