# FACULTY OF ENGINEERING

B.E. 4/4 (M/P) I-Semester (Main) Examination, November / December 2012

#### **Subject : Finite Element Analysis**

Time : 3 Hours

Max. Marks: 75

## Note: Answer all questions of Part - A and answer any five questions from Part-B.

## PART – A (25 Marks)

| 1. | Define equilibrium and compatibility conditions.                                                                                                                                | (2)                 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 2. | Derive quadratic shape functions for I-D element in global coordinates.                                                                                                         | (3)                 |
| 3. | What is plane stress? Write 'D' matrix.                                                                                                                                         | (2)                 |
| 4. | Define (a) Virtual displacement (b) potential energy                                                                                                                            | (2)                 |
| 5. | Write the stiffness matrix of a frame element.                                                                                                                                  | (3)                 |
| 6. | Write the equivalent load vector of a beam subjected to triangular load.                                                                                                        | (3)                 |
| 7. | The shape functions in triangular element are 0.3 and 0.2. The nodal displacements are $\{0.0, 0.01, 0.02, 0.03, 0.01, 0.0\}^T$ , mm, find the displacement at any point in the | $\langle 0 \rangle$ |
| •  | triangle.                                                                                                                                                                       | (3)                 |
| 8. | If the torque on node 1 is 1000 N-M of a circular shaft of 10mm dia and                                                                                                         | ( <b>-</b> )        |
|    | length of 2m, find the nodal twists of $G=0.8 \times 10^{10} \text{N/m}^2$ .                                                                                                    | (3)                 |
| 9. | What is convergency ? Explain.                                                                                                                                                  | (2)                 |
| 10 | . Derive capacitance matrix for rod.                                                                                                                                            | (2)                 |

#### **PART – B** (5x10=50 Marks)

11. Determine the nodal (figure1) displacements the element strains and stresses and the reaction forces if



1 ig. i

A=0.0001m<sup>2</sup>, E=200 GPa, P=10<sup>5</sup>N,  $\alpha$ =6x10<sup>-6</sup>/°C and subject to a uniform temperature load of  $\Delta$ T=100°C.

12. For the plane truss shown in figure 2. Determine the nodal displacement element stresses and reaction forces if A = $1 \times 10^{-4} \text{m}^2$ , E=200GPa.



Fig. 2

13. For the beam shown in figure 3. Determine the max displacement and the reaction forces and moments if E = 200 GPa.



- 14. Derive strain-displacement Matrix for
  - (i) Axi symmetric Triangular element
  - (ii) Constant strain Triangle
- 15.(a) For the 4-noded qudrilateral element find the displacement at point

 $P(\xi^2=-0.5, n=-0.4)$  if the noded displacements are  $q=\{0.001, 0.0, 0.0, -0.002, 0.0, -0.01, -0.001, +0.003\}^T$  mm.

(b) Find  $I_{\xi} = \int_{-1}^{1} (\xi^2 + 3\xi - 10.0) d\xi$  using

Gaussian quadrature (for n=1,  $\xi$ =0.0, w=2.0, for n=2,  $\xi$ =±0.577, w<sub>1</sub>=w<sub>2</sub>=1.0) and compare the solution with numerical integration.

16. For the rod shown in figure 4 subjected to convection and heat flux, determine the temperature distribution if thermal conductivity is 50w/cm°c.



17. Determine the natural frequencies of a cantilever beam as shown in figure 5 E=200 GPa, s = 7800 kg/m<sup>3</sup>.



Fig. 5

\*\*\*\*