FACULTY OF ENGINEERING

B.E. (III/IV Year) (Mech.) II Semester (Main) Examination, June 2010

${ }^{-}$Time : 3 Hours]

Part A-(Marks : $10 \times 21 / 2=25)$

1. Briefly explain the physical significance of "critical radius of insulation" as applied to a cylindrical shell.
2. State and explain the Stefan-Boltzmann law of radiation heat transfer, giving the nomenclature involved in it.
3. Define "fin efficiency " (η) and "fin effectiveness" (ε) and give the relationship between the two.
4. What do you physically mean by a "lumped body'. When can it be mathematically assumed to be feasible?
5. State Buckingham's π-theorem and mention its usefulness in fluid-flow and heat-transfer pus.
6. Explain the physical significance of "Prandth number" giving relevant mathematical expression for the same.
7. State and explain Kirchhoff's laws of radiation.
8. Define and distinguish between "White" and "Black" bodies.
9. How does "fouling factor" adversely affect heat exchanger performance?
10. Define and distinguish between "Pool" and "flow" boiling.

$$
\text { Part B-(Marks : } 5 \times 10=50)
$$

11. A 0.35 m thick plane wall has its two surfaces maintained at $35^{\circ} \mathrm{C}$ and $115^{\circ} \mathrm{C}$. It is given that the thermal conductivity varies with temperature, but data is provided only for temperatures of $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$, at which the values of thermal conductivity are given to be $26 \mathrm{~W} / m-k$ and $32 \mathrm{~W} / m-K$, respectively. Evaluate the heat flux through the wall assuming that thevariation of thermal conductivity with temperature is Linear.
12. A 2.5 cm round rod projects from the inside wall of a furance into a gas at $1200^{\circ} \mathrm{C}$. The wall temperature is $800^{\circ} \mathrm{C}$, while the rod is of length 10 cm and of thermal conductivity $38 \mathrm{~W} / \mathrm{m}-\mathrm{K}$. The convection heat transfer coefficient offered on the surface has been found to be $55 \mathrm{~W} / \mathrm{m}^{2}-K$. Calculate the tip temperature and also the rate of heat flow through the rod into the wall.
13. A cube-shaped casting of each side 15 cm is made of cast iron $\{k=35 \mathrm{~W} / \mathrm{mk}$, $\left.C p=486 \mathrm{~J} / \mathrm{kgK}, \int=7750 \mathrm{~kg} / \mathrm{m}^{3}\right\}$ and is at an initial uniform temperature of $400^{\circ} \mathrm{C}$ throughout. It is suddenly exposed to an atmosphere at $40^{\circ} \mathrm{C}$, with a convection heat transfer coefficient of $30 \mathrm{~W} / \mathrm{m}^{2}-K$.Estimate the time the casting takes to get cooled down to a temperature of $200^{\circ} \mathrm{C}$.
14. Atmospheric air at $30^{\circ} \mathrm{C}$ flows with a velocity of $0.915 \mathrm{~m} / \mathrm{s}$ over an isothermal vertical flat plate, held at $45.6^{\circ} \mathrm{C}$ throughout, and of length 61 cm . Find the velocity boundary layer thickness and the skin friction coefficient at the trailing edge of the plate and also calculate the net drag force over the entire plate. What is the pumping power needed to be expanded?
15. Saturated water, at a temperature of $100^{\circ} \mathrm{C}$, is boiled using a heating element made of copper, that is immersed in water. Measurements reveal that the surface heat flux is $400 \mathrm{Kw} / \mathrm{m}^{2}$. Determine the surface temperature of the heating element.
16. Determine the net rate of heat exchange by radiation between two black plates of dimensions $2 m \times 2 m$, when they are arranged such that they are perpendicular to cach other and have a common edge, while their surfaces are maintained at emperatures of 800 K and 600 K, respe
17. A shell and tube heat exchanges has one shell passes and four tube passes. The hot fluid enters the tubes at $200^{\circ} \mathrm{C}$ and leaves at $100^{\circ} \mathrm{C}$, while the cold fluid enters the shell at $20^{\circ} \mathrm{C}$ and leaves at $90^{\circ} \mathrm{C}$. The overall heat transfer coefficient, based on a heating area of $12 \mathrm{~m}^{2}$, has a value of $290.75 \mathrm{~W} / \mathrm{m}^{2}-K$. Determine the heat transfer rate between the fluids for the above configuration.
