FACULTY OF ENGINEERING
 B.E. $2 / 4$ (Mech./Prod) I Semester (Main) Examination, December 2010 MECHANICS OF MATERIALS

Time : 3 Hours]
Note: 1) Answer all questions 2) Answer any five questio ${ }^{2}$ (rom Part ${ }^{\circ}$

PART - A
[Max. Marks : 75
(25 Marks)

1. Multiple choice :
i) A rod of length l is subjected to a rise of temperature $\mathrm{T}^{\circ} \mathrm{C}$ is permitted to expand only by δ. If α is the coefficient of thermal expansion, then temperature strain is
a) $\alpha \mathrm{T}(l-\delta) / l$
b) $\alpha \mathrm{T}(l+\delta) / l$
c) $(\alpha \mathrm{T} l-\delta) /(\alpha T l)$
d) $(\alpha \mathrm{T} t-\delta) / l$
ii) The maximum BM for eccentrically loaded hinged columns for effective length L using secant formula is
a) $M=P e \cdot \sec L \sqrt{\frac{P}{2 E I}}$
b) $\mathrm{M}=\mathrm{Pe} \cdot \sec \mathrm{L} \sqrt{\frac{2 \mathrm{P}}{\mathrm{EI}}}$
c) $\mathrm{M}=\mathrm{Pe} \cdot \sec \frac{\mathrm{L}}{2} \sqrt{\frac{\mathrm{P}}{\mathrm{EI}}}$
d) $M=\operatorname{Pe} \cdot \sec \frac{L}{2} \sqrt{\frac{P}{2 E I}}$
2. Fill up the blanks :
i) The shear stress along the principal planes is \qquad
ii) The intensity of loading w and shear force F at a section are related by equation
3. Define flexural rigidity and torsional rigidity.
4. Differentiate between thick and thin cylinders.
5. Define core of a section and explain its significance.
6. Draw the stress-strain curve for brittle steel specimen and explain how yield stress is obtained from it.
7. A triangular section beam withbase width 10 mm and height 300 mm is subjected to a SF of 50 kN . Sketch theshear stress distribution across the section.
8. A cantilever carries a u.d.l. overthe entire ston 2 m . If the slope at the free end is 1°, find the deflection at the free endeqabe $=20 \times 10^{6} \mathrm{~N}-\mathrm{mm}^{2}$.
9. State the expressions for hoop stress and radial pressure at any radius x for a thick
cylinder and sketch the distribution of the same.
10. Define the terms column, strut and crippling load.
PART - B
11. A copper rod 36 mm diameter is enclosed with in steel tube 40 mm internal diameter and 5 mm thick, the ends being rigidly connected together. The combination is then heated through $30^{\circ} \mathrm{C}$. Find the intensity of stress in each metal. Take $\alpha_{c}=16 \times 10^{-6}$ per ${ }^{\circ} \mathrm{C}, \alpha_{\mathrm{s}}=12 \times 10^{-6}$ per ${ }^{\circ} \mathrm{C}, \mathrm{E}_{\mathrm{c}}=1.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, and $\mathrm{E}_{\mathrm{s}}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
12. Construct SFD and BMD for the beam shown in Fig. 1. Mark the salient values therein. Also locate the points of contraflexure, if any.

Fig. 1
13. a) Derive an expression for deflection at free end for a cantilever of length / carrying a point load W at free end.
b) A cantilever beam of length 3 m carries a u.d. 1 . of $4 \mathrm{kN} / \mathrm{m}$ for a length of 2 m from the fixed end and a point load of 5 kN at free end. If the section of the beam is 230 mm wide and 300 mm deep, find the deflection at the free end.Take $\mathrm{E}=10 \mathrm{GPa}$.
14. a) Derive the governing equation for theory of simple torsion.
b) A hollow circular shaft, with internal diameter equals to half the external diameter, transmits 100 kW at 250 rps . Calculate the internal and external diameters if the twist in the shaft is not to exceed 2° in 3 m length of shaft and the shearing stress is limited to 60 MPa .
15. A T-section beam with $100 \mathrm{~mm} \times 10 \mathrm{~mm}$ flange and $150 \mathrm{~mm} \times 15 \mathrm{~mm}$ web is simply supported and subjected to a u.d.l. of $10 \mathrm{kN} / \mathrm{m}$ over its entire span 8 m . Draw the variation of shear stress across the depth of the beam at supports and obtain the maximum shear stress at the section.
16. A compound cylinder is composed of a tube 250 mm internal diameter and 25 mm thick shrunk on to a tube of 250 mm external diameter and 25 mm thick. The radial pressure at the junction is $10 \mathrm{~N} / \mathrm{mm}^{2}$. The compound cylinder is subjected to an internal fluid pressure of $80 \mathrm{~N} / \mathrm{mm}^{2}$. Find the variation of hoop stress over the wall of the compound cylinder. Calculate also the final stresses set up in the section.
17. a) Derive an expression for core a rectangular section and sketch the same.
b) A hollow alloy tube 5 m long with external and internal diameters 30 mm and 25 mm respectively was found to extend by 4.3 mm under a tensile load of 40 kN . Find the critical load for the tube when used as a column with one end fixed and the other end free. Also find the safe load for the tube with a factor of safety of 4.

