

Code No.: 5292/M

FACULTY OF INFORMATICS B.E. 3/4 (IT) II Semester (Main) Examination, May/June 2012 DESIGN AND ANALYSIS OF ALGORITHMS

Time: 3 Hours]

[Max. Marks: 75

Note: Answer **all** questions from Part **A**. Answer **any five** questions from Part **B**.

	PART-A	25
1.	Define Heap.	2
2.	Explain Union and find operations.	3
3.	Define optimal solution.	2
4.	Difference between Divide-and-Conquer and Dynamic Programming.	3
5.	What is multistage graph?	2
6.	State travelling salesperson's problem.	3
7.	Write the control abstraction of Lc-Search.	3
8.	What is decision problem?	3
9.	What is branch and bound?	2
10.	Define NP hard-NP complete.	2
	PART – B (5×10=50 Ma	rks)
11.	a) What is an algorithm? Explain time and space complexity of an algorithm.	5
	b) Write about Asymptotic Notation.	5

c) Optimal binary search trees.

Code No.: 5292/M

3

12. a) What is Knapsack problem? Explain. 3 b) Find an optimal solution to the Knapsack instance n = 3, M = 20, $(P_1, P_2, P_3) =$ (25, 24, 15) and $(W_1, W_2, W_3) = (18, 15, 10)$. 7 13. a) Explain Reliability Design Problem. b) Write a recursive backtracking algorithm to find all the Hamiltonian cycles of a 6 given graph. 14. a) Explain FIFO Branch and Bound. 5 b) Explain graph coloring problem. 5 15. State and prove Cook's theorem. 10 16. a) Discuss in detail about the problem of job sequencing with deadlines. 4 b) Write Prim's algorithm and explain with an example to find minimum spanning 6 tree. 17. Write short notes on: a) Node covering problem. Single source shortest paths. 3