FACULTY OF INFORMATICS

B.E. 2/4 (IT) I-Semester (Main) Examination, November / December 2012

Subject : Discrete Mathematics

Time : 3 Hours

Max. Marks: 75

Note: Answer all questions of Part - A and answer any five questions from Part-B.

PART – A (25 Marks)

1.What are the contrapositive, the converse, the inverse of the conditional statement "The

-	(2)
2. Define an IMPLICATION with an example.	(2)
3. Define TAUTOLOGY with an example.	(2)
State De Morgan laws; write truth table for any one law.	(3)
5. Write universe of discourse property.	(3)
6. What are the negations of the statements $\forall x(x^2 > x)$ and $\exists x(x^2 = 2)$?	(2)
7. Use predicates, quantifiers, logical connectives and mathematical operators to express the	
statement that there is a positive integer that is not the sum of three squares.	(3)
8. Show that n ² is not O(n).	(3)
9. Define totally ordered set.	(3)
10. Define Complete Graphs and give an example.	(2)
PART – B (5x10=50 Marks) 11. Construct a truth table for each of these compound propositions.	
	(5x2=10)
(a) $p \oplus p$ (b) $p \oplus \neg p$ (c) $p \oplus \neg q$ (d) $\neg p \oplus \neg q$ (e) $(p \oplus q) \lor (p \oplus \neg q)$	(5x2=10)
 (a) p ⊕ p (b) p ⊕¬p (c) p ⊕¬q (d) ¬p⊕¬q (e) (p ⊕q)∨(p⊕¬q) 12.(a) Show that ¬(p∨q) and ¬p∧¬q are logically equivalent. (b)Use truth tables to verify the associative laws 	(5x2=10) (4)
 (a) p ⊕ p (b) p ⊕¬p (c) p ⊕¬q (d) ¬p⊕¬q (e) (p ⊕q)∨(p⊕¬q) 12.(a) Show that ¬(p∨q) and ¬p∧¬q are logically equivalent. (b)Use truth tables to verify the associative laws (i) (p∨q)∨r =p∨(q∨r) (ii) (p∧q) ∧r=p(q∧r) 	(5x2=10) (4) (6)
 (a) p ⊕ p (b) p ⊕¬p (c) p ⊕¬q (d) ¬p⊕¬q (e) (p ⊕q)∨(p⊕¬q) 12.(a) Show that ¬(p∨q) and ¬p∧¬q are logically equivalent. (b)Use truth tables to verify the associative laws (i) (p∨q)∨r =p∨(q∨r) (ii) (p∧q) ∧r=p(q∧r) 13.(a) For which real numbers x and y is it true that [x + y] = [x] + [y] ? 	(5x2=10) (4) (6) (5)
 (a) p ⊕ p (b) p ⊕¬p (c) p ⊕¬q (d) ¬p⊕¬q (e) (p ⊕q)∨(p⊕¬q) 12.(a) Show that ¬(p∨q) and ¬p∧¬q are logically equivalent. (b)Use truth tables to verify the associative laws (i) (p∨q)∨r =p∨(q∨r) (ii) (p∧q) ∧r=p(q∧r) 13.(a) For which real numbers x and y is it true that [x + y] = [x] + [y] ? (b) Show that f(x) = x²+2x+1 is O(x²). 	(5x2=10) (4) (6) (5) (5)
 (a) p ⊕ p (b) p ⊕¬p (c) p ⊕¬q (d) ¬p⊕¬q (e) (p ⊕q)∨(p⊕¬q) 12.(a) Show that ¬(p∨q) and ¬p∧¬q are logically equivalent. (b)Use truth tables to verify the associative laws (i) (p∨q)∨r =p∨(q∨r) (ii) (p∧q) ∧r=p(q∧r) 13.(a) For which real numbers x and y is it true that [x + y] = [x] + [y] ? (b) Show that f(x) = x²+2x+1 is O(x²). 14.(a) Prove that 3 divides n³ + 2n whenever n is a positive integer.	(5x2=10) (4) (6) (5) (5) (5)
 (a) p ⊕ p (b) p ⊕¬p (c) p ⊕¬q (d) ¬p⊕¬q (e) (p ⊕q)∨(p⊕¬q) 12.(a) Show that ¬(p∨q) and ¬p∧¬q are logically equivalent. (b)Use truth tables to verify the associative laws (i) (p∨q)∨r =p∨(q∨r) (ii) (p∧q) ∧r=p(q∧r) 13.(a) For which real numbers x and y is it true that [x + y] = [x] + [y] ? (b) Show that f(x) = x²+2x+1 is O(x²). 14.(a) Prove that 3 divides n³ + 2n whenever n is a positive integer. (b) Find the number of positive integers between 1000 and 9999 inclusive are	(5x2=10) (4) (6) (5) (5) (5) not
 (a) p ⊕ p (b) p ⊕¬p (c) p ⊕¬q (d) ¬p⊕¬q (e) (p ⊕q)∨(p⊕¬q) 12.(a) Show that ¬(p∨q) and ¬p∧¬q are logically equivalent. (b)Use truth tables to verify the associative laws (i) (p∨q)∨r =p∨(q∨r) (ii) (p∧q) ∧r=p(q∧r) 13.(a) For which real numbers x and y is it true that [x + y] = [x] + [y] ? (b) Show that f(x) = x²+2x+1 is O(x²). 14.(a) Prove that 3 divides n³ + 2n whenever n is a positive integer. (b) Find the number of positive integers between 1000 and 9999 inclusive are divisible by either 5 or 7?	(5x2=10) (4) (6) (5) (5) (5) not (5)
 (a) p ⊕ p (b) p ⊕¬p (c) p ⊕¬q (d) ¬p⊕¬q (e) (p ⊕q)∨(p⊕¬q) 12.(a) Show that ¬(p∨q) and ¬p∧¬q are logically equivalent. (b)Use truth tables to verify the associative laws (i) (p∨q)∨r =p∨(q∨r) (ii) (p∧q) ∧r=p(q∧r) 13.(a) For which real numbers x and y is it true that [x + y] = [x] + [y] ? (b) Show that f(x) = x²+2x+1 is O(x²). 14.(a) Prove that 3 divides n³ + 2n whenever n is a positive integer. (b) Find the number of positive integers between 1000 and 9999 inclusive are divisible by either 5 or 7? 15.(a) Solve a_n = a_{n-1} + 2_n + 3, a₀ = 4. 	(5x2=10) (4) (6) (5) (5) (5) not (5) (5)

- 16.(a) Let R be the relation on the set of people such that x R y if x and y are people and x is older than y. Show that R is not a partial ordering. (5)
 - (b) Determine whether the relations for the following directed graph is reflexive, symmetric, anti symmetric and / or transitive.(5)

17.(a) Find the degree sequence of each of the following graphs: (4+6)

(i) K_4 (ii) C_4 (iii) W_4 (iv) $K_{2,3}$

(b) Find a spanning tree of the following simple graph.

