FACULTY OF INFORMATICS

B.E. 2/4 (IT) II Semester (Main) Examination, May/June 2011 SIGNALS AND SYSTEMS

Time : 3 Hours]

[Max. Marks : 75

Note : Answer all questions from Part – A. Answer any five questions from Part – B.

		PART - A	(Marks : 25)	
1.	Men	tion any 3 types of classifications of signals.	2	
2.	Defir	ne and sketch sign function.	EG 3	
3.	Find	the Fourier Transform of $e^{-at} u_s(t)$.	2	
4.	Defir	Define Bandwidth and Band limit of a signal.		
5.	Differentiate energy and power signals. 3			
6.	Define Aliasing. 2			
7.	State the convolution property of Fourier Transform. 2			
8.	Find the 3-transform of $\left(\frac{1}{4}\right)^n u_s(n)$ and also indicate the ROC. 3			
9.	Check whether the system $y(n) = e^{x(n)}$ is linear or not. 2			
10.	Mention any 4 representations of systems. 3			
		PART – B	(Marks : 50)	
11.	(a)	Find the exponential Fourier series representation of $x(t) = \cos 4t + \sin 6t$.	the signal 6	
	(b)	Explain how signals can be represented as a sum of sinuso	ids. 4	
12.	(a)	Explain about any 5 properties of Fourier Transform wite examples.	h suitable 5	
	(b)	Find the Inverse Laplace Transform of $X(s) = \frac{3s + 4}{(s + 1)(s + 2)}$	<u>7</u> . 5	
13.	(a) (b)	Explain how signals can be reconstructed from their sample Define energy spectral density and power spectral density.	s. 7 3	
(This paper contains 2 pages) 1 P.T.O.				

4

6

4

6

14. (a) Explain about auto correlation and cross correlation of signals.

(b) If
$$X(z) = \frac{z^2 + 7z + 12}{z^2 + 3z + 2}$$
, ROC = $|z| > 2$, find $x(n)$.

15. (a) Define the following system properties :

- (i) Linear
- (ii) BIBO stable
- (iii) Causal
- (iv) Relaxed

(b) Find the Transfer function of the given system :

16. (a) Solve the following using Laplace Transforms :

 $\ddot{y}(t) + 8\dot{y}(t) + 12y(t) = 2\dot{x}(t) + x(t)$.

 $\dot{y}(0) = 1$, y(0) = 4 and $x(t) = u_s(t)$.

- (b) Explain about representation of signals defined on intervals.
- 17. Write short notes on :
 - (a) Nyquist Sampling Theorem.
 - (b) State Space Representation.
 - (c) Coding and Quantization.

5

3

3

4

5