FACULTY OF INFORMATICS

B.E. $2 / 4$ (IT) II Semester (Main) Examination, May/June 2011 SIGNALS AND SYSTEMS

Time : 3 Hours]

[Max. Marks: 75
Note : Answer all questions from Part - A. Answer any five questions from Part - B.
PART - A1. Mention any 3 types of classifications of signals.2. Define and sketch sign function.3. Find the Fourier Transform of $e^{-a t} u_{s}(t)$.

1. Mention any 3 types of classifications of signals.
2. Define and sketch sign function.
3. Find the Fourier Transform of $e^{-a t} u_{s}(t)$.
4. Define Bandwidth and Band limit of a signal. 3
5. Differentiate energy and power signals. 3
6. Define Aliasing. 2
7. State the convolution property of Fourier Transform. 2
8. Find the 3-transform of $\left(\frac{1}{4}\right)^{n} u_{s}(n)$ and also indicate the ROC. 3
9. Check whether the system $y(n)=e^{x(n)}$ is linear or not. 2
10. Mention any 4 representations of systems. 3
PART - B
(Marks : 50)
11. (a) Find the exponential Fourier series representation of the signal $x(t)=\cos 4 t+\sin 6 t$.
(b) Explain how signals can be represented as a sum of sinusoids. 4
12. (a) Explain about any 5 properties of Fourier Transform with suitable examples. 5
(b) Find the Inverse Laplace Transform of $X(s)=\frac{3 s+4}{(s+1)(s+2)^{2}}$. 5
13. (a) Explain how signals can be reconstructed from their samples. 7
(b) Define energy spectral density and power spectral density. 3
14. (a) Explain about auto correlation and cross correlation of signals.
(b) If $X(z)=\frac{z^{2}+7 z+12}{z^{2}+3 z+2}$, ROC $=|z|>2$, find $x(n)$.
15. (a) Define the following system properties:
(i) Linear
(ii) BIBO stable
(iii) Causal
(iv) Relaxed
(b) Find the Transfer function of the given system:

16. (a) Solve the following using Laplace Transforms:

$$
\begin{aligned}
& \ddot{y}(t)+8 \dot{y}(t)+12 y(t)=2 \dot{x}(t)+x(t) . \\
& \dot{y}(0)=1, y(0)=4 \text { and } x(t)=u_{s}(t) .
\end{aligned}
$$

(b) Explain about representation of signals defined on intervals.
17. Write short notes on:
(a). Nyquist Sampling Theorem. 3
(b) State Space Representation. 3
(c) Coding and Quantization. 4

