FACULTY OF ENGINEERING

B.E. II/IV Year (IT) II Semester (Main) Examination, May/June, 2011 PROBABILITY \& RANDOM PROCESS

Answer all questions from Part A. Answer any five questions from Part B. Part A-(Marks : 25)

1. If A and B are independent events prove that $P\left(A^{c} \cap B\right)$ is also independent. L

2. A number is choosen at random from 200 numbers. Find the probability it is devisible by 4 or 6 .
3. Define characteristice function and explain briefly. 3
4. State and prove addition Theorem for random vairieties. 3
5. Derive the characterstic function for
$f(x)=k\left\{\begin{array}{c}a<x<b \\ a<b\end{array}\right\}$
6. Define probability function. 2
7. State Ergodicity and Stationarity. 3
8. State the Bivaiate Gaussion process. 2
9. Define White Noise. 2
10. State the properties of Co-variance function. 2

Part B-(Marks : 50)
11. (a) State and prove Baye's Theorem.
(b) Player A speaks fruit 4 out of 7 times. A card is drawn from a pack of 52 cards, he reports that there is a club. Find if it was a club.
12. Given the r.v. x with density function $\mathrm{f}(\mathrm{x})=2 \mathrm{x} 0<\mathrm{x}<1$ find the p.d.f. of $\mathrm{Y}=8 \mathrm{x}^{3}$
(b) Find mean and variance of the r.v. for p.d.f. $\mathrm{f}(\mathrm{x})=\Phi \mathrm{e}^{-\Phi \mathrm{x}} \Phi>0: \mathrm{x} \geq 0$.
13. (a) Find the density function $f(x)$ corresponding to the characteristic function defined as :
$\Phi(\mathrm{t})=1-1 \mathrm{t} 1$
$1 \mathrm{t} 1 \leq 1$
0
$1 \mathrm{t} 1>1$
(b) State the properties of power spectral density function.
14. If $\mathrm{x}(\mathrm{t})=5 \cos (10 \mathrm{t}+\Phi)$ and $\mathrm{Y}(\mathrm{t})=20 \sin (10 \mathrm{t}+\Phi)$ where Φ is a r.v. Uniformly distributed in $(0,2 \pi)$, prove that the processes $x(t)$ and $y(t)$ are jointly wide-stationary process.
15. (a) State the properties of cross correlation function.
(b) Find the power spectral density of a WSS process with auto correlation function $R(T)=\overline{\mathrm{e}}^{\alpha \tau 2}$
16. The joint probability function is given by

x / y	1	2	3	4	5	6
0	0	0	$1 / 32$	$2 / 32$	$2 / 32$	$3 / 32$
1	$1 / 16$	$1 / 16$	$1 / 8$	$1 / 8$	$1 / 8$	$1 / 8$
2	$1 / 32$	$1 / 32$	$1 / 64$	$1 / 64$	0	$2 / 64$

find (i) $\mathrm{p}(\mathrm{x} \leq 1)$ (ii) $\mathrm{p}(\mathrm{x} \leq 1), \mathrm{y} \leq 3$. (iii) $\mathrm{p}(\mathrm{x} \leq 1 / \mathrm{y} \leq 3$
(iv) $p(x+y \leq 4),(v) p(y \leq 3 / x \leq 1)$
17. $\mathrm{X}(\mathrm{t})$ is the input voltage to a circuit and $\mathrm{y}(\mathrm{t})$ is the output voltage. If $\mathrm{x}(\mathrm{t})$ is a stationary random process with $M_{x}=0 ; R_{x x}(\tau)=e^{-2}|T|$ and Transfer function $H(w) \equiv 1$ find Ryy (τ).

$$
\mathrm{w}+2 \mathrm{i}
$$

