Code No.: 3305

FACULTY OF ENGINEERING

B.E. II/IV Year (IT) II Semester (Main) Examination, May/June, 2011 PROBABILITY & RANDOM PROCESS

Time: 3 Hours]

[Max. Marks: 75

	0 0 1/32 2/32 3/32 3/32	
	Answer all questions from Part A.	
	Answer any five questions from Part B.	
	Part A – (Marks : 25)	
	* 52.0	
1.	If A and B are independent events prove that $P(A^c \cap B)$ is also independent.L	3
2.	A number is choosen at random from 200 numbers. Find the probability it is devisible by 4 or 6.	3
3.	Define characteristice function and explain briefly.	3
4.	State and prove addition Theorem for random vairieties.	3
5.	Derive the characterstic function for	2
	$f(x) = k \left\{ \begin{array}{c} a < x < b \\ a < b \end{array} \right\}$	
6.	Define probability function.	2
7.	State Ergodicity and Stationarity.	3
8.	State the Bivaiate Gaussion process.	2
9.	Define White Noise.	2
10.	State the properties of Co-variance function.	2
	Part B – (Marks : 50)	
11.	(a) State and prove Baye's Theorem.	4
	(b) Player A speaks fruit 4 out of 7 times. A card is drawn from a pack of 52 cards, he reports that there is a	club.
	Find II it was a club.	0
12.	Given the r.v.x with density function $f(x) = 2x \ 0 \le x \le 1$ find the p.d.f. of $Y = 8x^3$	4
	(b) Find mean and variance of the r.v. for p.d.f.	
	$f(x) = \Phi e^{-\Phi x} \Phi > 0 : x \ge 0.$	
13.	(a) Find the density function f (x) corresponding to the characteristic function defined as :	5
	$\Phi(t) = 1 - 1t 1$ $1 t 1 \le 1$	
	0 1 t l > 1	
	(b) State the properties of power spectral density function.	5

6

- 14. If x (t) = 5 cos (10t + Φ) and Y (t) = 20 sin (10t + Φ) where Φ is a r.v. Uniformly distributed in (0, 2 π), prove that the processes x (t) and y (t) are jointly wide-stationary process. 10
- 15. (a) State the properties of cross correlation function.
 - (b) Find the power spectral density of a WSS process with auto correlation function $R(T) = \overline{e}^{\alpha \tau 2}$
- 16. The joint probability function is given by

x/y	1	2	3	4	5	6
0	0	0	1/32	2/32	2/32	3/32
1	1/16	1/16	1/8	1/8	1/8	1/8
2	1/32	1/32	1/64	1/64	0	2/64
find (i)	$p(x \le 1)$	(ii) p (x	< 1). v	\leq 3. (ii	i) $p(x \leq$	$1/v \leq 2$

(iv) $p(x+y \le 4)$, (v) $p(y \le 3 / x \le 1)$

17. X (t) is the input voltage to a circuit and y (t) is the output voltage. If x(t) is a stationary random process with $M_x = 0$; $R_{xx}(\tau) = e^{-2} |T|$ and Transfer function H (w) = 1 find Ryy (τ). 10