. FACULTY OF INFORMATICS

B.E. 3/4 (IT) I Semester (Main) Examination, December 2010 THEORY OF AUTOMATA

Time : 3 Hours]

[Max. Marks : 75

Note: Answer all questions from pan A. An wiver any five questions from Part - B.
PART - A
(25 Marks)

1. Give any two applications of FA. 2
2. Draw a DFA for:The set of all strings over the alphabet $\{\mathrm{a}, \mathrm{b}\}$ with different first and lastletters.3
3. State the pumping lemma for regular sets. 3
4. What is ambiguous grammar? Give an example. 4
5. Give the properties of CFL's. 2
6. Define Greibach Normal Form. 2
7. Define Turing machine. 3
8. What is a recursively enumerable language? 2
9. What is meant by undecidability ? 2
10. What is Restricted Turing machine? 2
11. a) Convert the following NFA with E -moves to NFA without E -moves.

b) Construct an NFA withe-moves for the regular expression $(00+11) 0^{*}$.
12. a) Show that the following language is not regular
$\mathrm{L}=\left\{\mathrm{a}^{\left.\mathrm{n}^{2} / \mathrm{n} \geq 1\right\}}\right.$
b) Minimize the following DFA whose δ is given by

13. a) Consider the grammar $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{P}, \mathrm{E})$ where
$P=\{E \rightarrow I, E \rightarrow E * E, E \rightarrow E+E$,
$\mathrm{E} \rightarrow$ (E)
$\mathrm{I} \rightarrow \mathrm{a}|\mathrm{b}| \mathrm{c}\}$.
Check whether the above grammar is ambiguous or not.
b) Construct a PDA equivalent to the grammar
$\mathrm{S} \rightarrow \mathrm{aAA}$
$\mathrm{A} \rightarrow \mathrm{as}|\mathrm{bs}| \mathrm{a}$.
14. a) Convert the following grammar into chomsky normal form
$\mathrm{S} \rightarrow \mathrm{abbB}$
$\mathrm{A} \rightarrow \mathrm{aA} / \mathrm{a}$
$\mathrm{B} \rightarrow \mathrm{bB} / \mathrm{b}$
b) Design a PDA for the language $\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{2 \mathrm{n}} / \mathrm{n} \geq 1\right\}$.
15. Design a turing machine that computes proper substraction function defined by

$$
\begin{aligned}
\mathrm{m}-\mathrm{n} & =\mathrm{m}-\mathrm{n} & & \text { if } \mathrm{m} \geq 0 \\
& =0 & & \text { if } \mathrm{m}<\mathrm{n}
\end{aligned}
$$

16. a) Briefly explain about various types of Turing Machines.
b) Write the Membership algorithm (CYK algorithm) for content free grammars. 4
17. Write short notes on
a) Closure properties of CFLs.
b) Post - correspondence problem.
c) Universal Turing Machine.
