FACULTY OF INFORMATICS

B.E. 2/4 (IT) II Semester (Main) Examination, June 2010

 SIGNALS AND SYSTEMSTime: 3 Hours]
Instructions: 1) Answer all questions from Part A.
2) Answer any five questions from Part B.

PART - A

1. Define Time scaling and Time shifting properties of signals. 2
2. Write the conditions for the existence of a Fourier series. 3
3. What is the relationship between Fourier transform and Laplace transform ? 2
4. Find the energy spectral density of the signal, $x(t)=e^{-\alpha t} u_{s}(t), \alpha>0$. 3
5. State the Nyquist sampling theorem. 2
6. Distinguish between coding and quantization. 3
7. Find the z-transform of the unit impulse function. 2.
8. Distinguish between convolution and correlation. 3
9. What are SISO and MIMO systems ? 2
10. Define BIBO stability of a system. 3
PART - B11. a) Define and sketch the unit triangle function.4
b) Explain Time scaling, Time shifting and limits of signals each with a suitable example. 6
11. a) Write the definition of Fourier transform. Also write any six properties of Fourier transform. 7
b) Calculate the power in the signal. 3

$$
\mathrm{x}(\mathrm{t}) \sum_{\mathrm{m}=-\infty}^{\infty} \Pi(\mathrm{t}-2 \mathrm{~m})
$$

13. a) Explain about Aliasing. What are its effects on signal sampling ?
b) Explain about addition, multiplication and scaling of sequences with examples.
14. a) Find the inverse z-transform of

$$
X(z)=\frac{1}{4(z-1)(z-1 / 4)}, R O C=\{|z|>1\}
$$

b) Write the properties of correlation integrals.
15. Consider the transfer functions:
$H_{1}(s)=\frac{Y_{1}(s)}{X_{1}(s)}=\frac{100}{s^{2}+6 s+100}$ and
$H_{2}(s)=\frac{Y_{2}(s)}{X_{2}(s)}=\frac{s}{s+20}$
a) Suppose these two systems are connected in a cascade connection where x_{1} (s) is the input signal to the composite system and $\mathrm{Y}_{2}(\mathrm{~s})$ is the output signal. Draw the appropriate block diagram and find the transfer function of the composite system.
b) Also find the transfer function if these two systems are connected in a parallel interconnection structure.
16. Find the solution of the following differential equation:
$\ddot{y}(\mathrm{t})+6 \dot{\mathrm{y}}(\mathrm{t})+8 \mathrm{y}(\mathrm{t})=\dot{\mathrm{x}}(\mathrm{t})+\mathrm{x}(\mathrm{t})$
$\dot{y}(\mathrm{o})=3, \mathrm{y}(\mathrm{o})=1, \quad \mathrm{x}(\mathrm{t})=\mathrm{u}_{\mathrm{s}}(\mathrm{t})$
17. Write short notes on:
a) Amplitude and phase spectra
b) Signals as sum of sinusoids
c) Sampling.

