FACULTY OF ENGINEERING

BE 3/4 (EE/Inst.) I-Sem (New) Examinations, November / December 2012

Subject: Power Electronics

Time: 3 Hours

Max. Marks:75

Note: Answer all questions from Part-A and any Five questions From Part-B

Part-A (25 Marks)

1.	Why it is necessary to use fast recovery diodes for high speed applications?	(2)
2.	What are the differences between enhancement type MOSFETs and depletion	
	type MOSFETs?	(3)
3.	Explain the R triggering circuit of a SCR.	(3)
	Explain the principle of operation of a GTO. State the limitations of GTO.	(2)
	A 230V, 50 Hz, single pulse SCR is triggered at a firing angle of 40° and the load current extinguishes at an angle of 210° . Find the circuit turn –off time.	(3)
6.	Derive the equation for average output voltage of a single phase half wave converter for R load.	(3)
7.	Explain the principle of pulse width modulation control of choppers.	(2)
8.	Explain the operation of a Buck regulator.	(3)
9.	Compare the Voltage source inverter with a Current source inverter.	(2)
10	Define amplitude modulation index and frequency modulation index in sinusoidal pulse width modulation.	(2)
Part-B (50 Marks)		
11	. a) Describe different methods of triggering a thyristor.	(5)
	b) Explain the switching characteristics of an IGBT with necessary diagrams.	(5)
12	a) Explain the working of Class-C commutation circuit with necessary diagrams.	(5)
	b) Explain the characteristics and applications of GTOs.	(5)
13	A three phase fully controlled bridge rectifier is supplied at 230 V/phase and at a frequency of 50Hz. The Source inductance L_s =5 mH and the load current on the DC side is constant at 12 A. If the load consists of a DC source voltage of 230 V having an internal resistance of 0.9 Ω , find a) firing angle b) overlap angle.	(10)
14	A simple chopper is operating at a frequency of 2 kHz from a 96 V DC source to supply a load resistance of 8Ω . The load time constant is 6 ms. If the average load voltage is 57.6 V. Find the T _{on} period of the chopper, the average load current, the magnitude of the ripple current and its RMS value.	(10)
45		
15	a) Explain the working of a Cuk regulator	(5)
	b) Write the applications of AC voltage regulators and cycloconverters	(5)
16	. For a single pulse modulation, show that output voltage can be expressed as	
	$V_{L} = \sum_{n=1,3,5}^{\infty} \frac{4V_{DC}}{n\pi} \sin\left(\frac{np}{2}\right) \sin(n\omega t)$, where p is the pulse width.	(10)
17	Write a short notes on	(10)
	(i) Noncirculating Dual converter	

(ii) Current source inverter
