FACULTY OF ENGINEERING

BE 3/4 (EE/Inst.) I-Sem (New) Examinations, November / December 2012

Subject: Power Electronics

Time: 3 Hours
Max. Marks:75
Note: Answer all questions from Part-A and any Five questions From Part-B

Part-A (25 Marks)

1. Why it is necessary to use fast recovery diodes for high speed applications?
2. What are the differences between enhancement type MOSFETs and depletion type MOSFETs?
3. Explain the R triggering circuit of a SCR.
4. Explain the principle of operation of a GTO. State the limitations of GTO.
5. A $230 \mathrm{~V}, 50 \mathrm{~Hz}$, single pulse SCR is triggered at a firing angle of 40° and the load current extinguishes at an angle of 210°. Find the circuit turn -off time.
6. Derive the equation for average output voltage of a single phase half wave
converter for R load.
7. Explain the principle of pulse width modulation control of choppers.
8. Explain the operation of a Buck regulator.
9. Compare the Voltage source inverter with a Current source inverter.
10. Define amplitude modulation index and frequency modulation index in sinusoidal pulse width modulation.

Part-B (50 Marks)

11. a) Describe different methods of triggering a thyristor.
b) Explain the switching characteristics of an IGBT with necessary diagrams.
12.a) Explain the working of Class-C commutation circuit with necessary diagrams.
b) Explain the characteristics and applications of GTOs.
13.A three phase fully controlled bridge rectifier is supplied at $230 \mathrm{~V} /$ phase and at a frequency of 50 Hz . The Source inductance $\mathrm{L}_{\mathrm{s}}=5 \mathrm{mH}$ and the load current on the DC side is constant at 12 A . If the load consists of a DC source voltage of 230 V having an internal resistance of 0.9Ω, find a) firing angle b) overlap angle.
12. A simple chopper is operating at a frequency of 2 kHz from a 96 V DC source to supply a load resistance of 8Ω. The load time constant is 6 ms . If the average load voltage is 57.6 V . Find the $\mathrm{T}_{\text {on }}$ period of the chopper, the average load current, the magnitude of the ripple current and its RMS value.
13. a) Explain the working of a Cuk regulator
b) Write the applications of AC voltage regulators and cycloconverters
14. For a single pulse modulation, show that output voltage can be expressed as $\mathrm{V}_{\mathrm{L}}=\sum_{n=1,3,5 \ldots}^{\infty} \frac{4 \mathrm{~V}_{\mathrm{DC}}}{\mathrm{n} \pi} \sin \left(\frac{n p}{2}\right) \sin (\mathrm{n} \omega \mathrm{t})$, where p is the pulse width.
15. Write a short notes on
(i) Noncirculating Dual converter
(ii) Current source inverter
