FACULTY OF ENGINEERING

B.E. 3/4 (EE/Inst.) I - Semester (New) (Main) Examination, Nov. / Dec. 2012

Subject : Digital Electronics and Logic Design

Time : 3 hours
Max. Marks : 75
Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B.

> PART - A (25 Marks)

1. State Demorgam's laws.
2. Using Boolean laws deduce the minimal function of $X=(A+B)\left(A^{\prime}+C\right)(B+C)$.
3. What is an encodes? Give its applications.
4. Find the dual of the function $F=X^{\prime} Y Z^{\prime}+X^{\prime} Y^{\prime} Z$.
5. Draw the circuit of a CMOS inverter and briefly explain its operation.
6. Simply the Boolean expression
$F=\left[\left(A^{\prime}+B\right)\left(A^{\prime}+C\right)(B+C)\right]^{\prime}$
7. What is the meaning of sourcing and sinking of current? What are its typical values in CMOS logic gates?
8. Add the following numbers using two's complement arithmetic
a) $-90+(-20)$
b) $125+(-45)$
9. Find the maximum length of sequence that can be generated, when four JK flipflops are used.
10. How is a state diagram useful for designing counters?

PART - B (50 Marks)
11.a) Find the complement of the function $F=x^{\prime} y z^{\prime}+x^{\prime} y^{\prime} z$ by finding the dual of the function.
b) Implement NOT, AND, OR, NOR, XOR and XNOR using NAND gates.
12. Explain the following :
a) TTL family
b) RTL family
13.a) Explain about decimal to binary code converter.
b) Design a 4 to 16 decodes using 3 to 8 decodes.
14. Using J-K flip-flops design a 4-bit asynchronous decade counter.
15. What is the rule of a correcting adder in a BCD adder circuit? Give the circuit diagram of a BCD adder circuit.
16. Design a counter using J-K flip-flop that goes through the states $1,2,3,6,7$ and repeats continuously.
17. Design and draw the PLA implementation of the combinational circuit whose truth table is

Inputs			Outputs	
x	y	z	F_{1}	F_{2}
0	0	0	1	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	1	0
1	0	1	0	0
1	1	0	1	0
1	1	1	1	1

