FACULTY OF ENGINEERING

B.E. 2/4 (EEE) I-Semester (Main)s Examination, November / December 2012

Subject : Electrical Circuits - I

Time: 3 Hours Max. Marks: 75

Note: Answer all questions of Part - A and answer any five questions from Part-B.

PART – A (25 Marks)

1. Find out the values of R_1 and R_2 so that the drop across R_1 is twice the drop across R_2 . (3)

- 2. Derive the equation for energy stored in the capacitor. (2)
- 3. Define the terms with respect to the graph of a circuit
 - (i) Tree (ii) co-tree (iii) Loop (3)
- 4. What are the properties of an incidence matrix? (2)
- 5. Find the average value of the waveform. (3)

- 6. What is the true power in an ac circuit? (2)
- 7. Explain the effect of variation of resistance on the selectivity of the circuit. (3)
- 8. What is an ideal transformer? Explain. (2)
- 9. What do you mean by balanced and unbalanced loads? (2)
- 10. Prove that at any instant of time the sum of the induced voltages in a three phase circuit is zero. (3)

PART – B (5x10=50 Marks)

11. Find the values of all resistors in the circuit and calculate the total power dissipated in them. (10)

(10)

(10)

12. Apply mesh analysis to solve i_1 , i_2 and ibc $_3$

13. Find the Thevenin's equivalent of the circuit.

- 14. A circuit consists of a series connected resistance of 10 ohms a capacitance of 150µ F and an inductance of 16mH connected across a supply of 100v at 50Hz. Evaluate (a) circuit current (b) power factor and (c) power consumed by the circuit. Draw the phasor diagram also. (10)
- 15. A voltage of 200 0° V is applied across two impedances in parallel as shown. Find KVA, KVAR, KW of the circuit. (10)

16.(a) Find the transmission parameters of the circuit.

- 17.(a) Derive the expression between phase and line currents for balanced delta (Δ) connected load.
 - (b) With two wattmeter method of power measurement of a balanced load, the readings of the two wattmeters are 5.92 KW and 2.61 KW. Find power and power factor.

(5)

(5)

(10)