FACULTY OF ENGINEERING

B.E. III/IV (E \& EE/Inst.) II Semester (Main) Examination, May/June 2011
 DIGITAL SIGNAL PROCESSING

Answer all questions from Part A. Answer any five questions from Part B.

Part A- (Marks : 25)

1. Let $e(n)$ be an exponential sequence i.e. $e(n)=\alpha^{n}$. and let $x(n)$ and $y(n)$ denote two arbitrary sequences. Show that

$$
\begin{gathered}
{[\mathrm{e}(\mathrm{n}) \mathrm{x}(\mathrm{n})] *(\mathrm{e}(\mathrm{n}) \mathrm{y}(\mathrm{n})=\mathrm{e}(\mathrm{n})[\mathrm{x}(\mathrm{n}) * \mathrm{y}(\mathrm{n})]} \\
{[* \text { represents convolution] }}
\end{gathered}
$$

2. $x(n)=17 \cos \left(20 \pi n+30^{\circ}\right)$. Find (a) Period of $x(n)$ (b) minimum samplimg frequency requried to avoid aliasing.
2
3. Distinguish between DFT and DTFT.
4. $x(n)=\{1,2,3,4\} y(n)=\{1,1,1$,$\} . Find linear convolution of the two signals using circular convolution. 3$
5. $\mathrm{H}(\mathrm{z})=\frac{2 . \mathrm{Z}}{3(\mathrm{Z}-1)}+\frac{2}{3(\mathrm{Z}-2)}+\frac{2}{2-3} . \operatorname{ROC} 1<|\mathrm{z}|<2$. Find inverse z transform.
6. Define stability in Z-plane.
7. What is the principle behind bilinear transformation?
8. $\mathrm{Ha}(\mathrm{s}) \frac{1}{\mathrm{~S}(\mathrm{~S}+1)}$, find $\mathrm{H}(\mathrm{z})$ using impulse invariant method.3
9. What is 'pipelining' in Digital signal processor? 3
10. Write the advantages of FIR filters.2

Part B - (Marks : 50)
11. (a) Find the step response of the following system $y(n)=0.6 y(n-1)-0.08 y(n-2)+x(n)$.
(b) Find the frequency response of the following system :

$$
Y(n)=0.5 \times(n)+x(n-1)+0.5 \times(n-2) .
$$

12. (a) State and prove symmetry properties of DFT.
(b) Determine the DFT of the following signal by using Radix 2 DIF FFT

$$
x(n)=\{1,2,3,2,1,2,3,2\}
$$

13. Obtain direct form 11 and parallel form realizations for the following system :

$$
\mathrm{H}(\mathrm{z})=\frac{\left(1+\mathrm{z}^{-1}\right)\left(1+3 \mathrm{z}^{-1}\right)}{\left(1+0.5 \mathrm{z}^{-1}\right)\left(1-0.25 z^{-1}\right)\left(1+0.125 z^{-1}\right)}
$$

14. Design an analog low pass Butterworth filter with the following specification :
-4 db at $20 \mathrm{rad} / \mathrm{sec}$
-10 db at $30 \mathrm{rad} / \mathrm{sec}$.
15. (a) State and prove necessary and sufficient condition for a FIR filter to have linear phase.
(b) Draw the architecture of $7 \mathrm{mS} 320 \mathrm{CS} \times \mathrm{DSP}$.
16. (a) Derive the algorithm for Radix 2 DIT FFT.7
(b) Write the steps to design FIR filter. 3
17. Write short notes on:
(a) Sampling, quatizing and encoding. 5
(b) Periodic convolution.
