Code No.: 3268

FACULTY OF ENGINEERING

B.E. 2/4 (EE/Inst.) II Semester (Main) Examination, May/June 2011 ELECTRONIC ENGINEERING-II

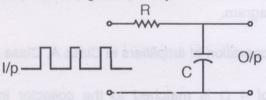
Time: 3 Hours]

[Max. Marks: 75

Note: Answer all questions from Part – A. Answer any five questions from Part – B.

PART - A

(Marks: 25)


- 1. Explain why the CMRR is infinite if a true current constant source is used in a symmetrical emitter-coupled difference amplifier.
- 2. How does a voltage series negative feedback alter the input and output impedances of an amplifier?
- 3. Draw the equivalent circuit of a crystal and define series and parallel resonances of the crystal.
- 4. Specify the type of components Z_i, Z_o and Z_f for a colpitts oscillator and sketch its circuit diagram.
- 5. What is meant by operation of amplifiers in Class A, Class B and Class C?
- 6. A resistive load of 4 Ω is matched to the collector impedance of an amplifier by means of a transformer having turns ratio of 40 : 1. What is the reflected impedance ?
- 7. Define rise time and delay time of a low pass filter for a step input.
- 8. What is meant by linear wave shaping?
- 9. A difference amplifier has a CMRR of $60d_B$ and $A_d = 1000$. Find A_C in dB.
- 10. In a BJT self bias circuit, which type of negative feedback is used? Justify.

PART - B

(Marks: 50)

- 11. (a) Derive the equation for A_f, the gain with feedback, for a negative feedback amplifier.
 - (b) Explain clearly how negative feedback effects the amplifier input and output impedances and derive R_{if} for shunt input connection.

- 12. (a) Derive an expression for frequency of oscillations of an RC phase shift oscillator and justify the Barkhausen conditions in this case.
 - (b) Find C and h_{fe} of a transistor to provide f_o of 50 KHz of a RC transistorized phase shift oscillator. Given $R_1 = 22 \text{ K}\Omega$, $R_2 = 68 \text{ K}\Omega$, $R_C = 20 \text{ K}\Omega$, $R = 6.8 \text{ K}\Omega$ and $h_{ie} = 2 \text{ K}\Omega$.
- 13. (a) Define A_C, A_D and CMRR of a difference amplifier.
 - (b) A difference amplifier has inputs $V_{S1} = 10$ mV, $V_{S2} = 9$ mV. If it has $A_D = 60$ dB and CMRR = 80 dB, find the percentage error in the output and the error voltage.
- 14. (a) Show that the output of a push pull amplifier does not contain even harmonics.
 - (b) If an amplifier draws 800 mA from a 10 V d.c. supply and delivers 6 Watts of audio power to a loud speaker, calculate: (i) d.c. power (ii) collector power dissipation (iii) conversion efficiency.
- 15. (a) Draw the response of the following circuit to the input given. Is it a differentiator or an integrator? Why?

- (b) Justify why a clamping circuit is called a d.c. restorer.
- (c) What is a clipper? Discuss.
- 16. (a) What is cross over distortion in power amplifiers?
 - (b) What is frequency stability with respect to oscillators?
- 17. Write notes on any two:
 - (a) Drift compensation techniques
 - (b) Complementary symmetry amplifier
 - (c) Effect of feedback on noise of an amplifier