Code No. : 3267

FACULTY OF ENGINEERING

B.E. 2/4 (E & EE / Inst) II Semester (Main) Examination, May/June 2011 ELECTROMAGNETIC THEORY

Time : 3 Hours]

[Max. Marks: 75

Note : Answer all questions of Part - A. Answer five questions from Part - B.

		PART - A ENGG (Marks : 2	5)
1.	State	e and explain Coulomb's law for electrostatic fields.	3
2.		e point charges -2 nc, 3 nc and 4 nc are located at $(0, 0, 1)$, $(0, 1, 0)$ and , 0), respectively. Find the energy in the system.	2
3.		the work done in carrying a 5 – c charge from $P(1, 2, -4)$ to -5, 6) in an electric field $E = a_x + z^2 ay + 2yza_z V/m$.	3
4.	Defir	ne Relaxation Time of a medium.	2
5.	State	and explain law of conservation of magnetic flux.	2
6.	Calc	ulate the self-inductance per unit length of an infinitely long solenoid.	3
7.		conductivity of silver is 3×10^6 mho/m. If the skin depth is 1.5 mm, find requency of the wave.	2
8.	the body of salt water having $\varepsilon_r = 100$; $\mu_r = 1$ and $\sigma = 100$ mho/m.		
	Dete	rmine α , β and η .	3
9.	Write	e the steps involved in finite element analysis.	3
10.	What	t do you mean by equipotential line ?	2
		PART – B (Marks : 5)	0)
11.	(a)	Determine D at (4, 0, 3) due to a point charge -5π mc at (4, 0, 0) and a line charge 3π mc/m along the y-axis.	
	(b)	State and explain Gauss law for electrostatic fields.	5
12.	(a)	Verify whether the potential field $V = 2x^2 - 3y^2 + z^2$ satisfy Laplace's equation.	5
	(b)	A spherical capacitor has inner radius 'a' and outer radius b and filled with a homogeneous dielectric with ϵ = $\epsilon_0 k/r^2$. Show that the	
		capacitance of capacitor is $C = \frac{4\pi\epsilon_0 k}{b-a}$.	5

(This paper contains 2 pages)

P.T.O.

13.	(a) (b)	Explain in detail magnetic scalar and vector potentials. For a current distribution in free space	5 5
		$A = (2x^{2}y + yz)a_{x} + (xy^{2} - xz^{3})a_{y} - (6xyz - 2x^{2}y^{2})a_{z} wb/m$	
		(i) Calculate B (ii) Find the magnetic flux through a loop described by $x = 1, 0 < y, z < 2$.	
14.	(a)	Derive the wave equation for free space.	5
	(b)	State and explain Maxwell's equations for time variant fields in differential and integral forms.	5
15.	(a)	Explain Method of Moments Analysis.	5
	(b)	Explain the numerical solution of Laplace's equation.	5
16.	(a)	Plane n + 2y = 5 carries charge ρ_s = 8 nC/,m ² , determine E at (-1, 0, 1).	5
	(b)	Calculate the self inductance per unit length of an infinitely long solenoid.	5
17.	Write	short notes on :	0
	(a) (b)	Boundary conditions for perfect dielectric materials. Poynting theorem.	