Code No.: 3264

FACULTY OF ENGINEERING

B.E. II/IV Year (E & EE) II Semester (Main) Examination, May/June 2011

ELECTRICAL CIRCUITS - II

Time : 3 Hours]

[Max. Marks: 75

3

3

3

Answer **all** questions from Part A. Answer any **five** questions from Part B.

Part A - (Marks: 25)

1. Find the range of values 'a' in P(s). So that $P(s) = 2s^4 + s^3 + as^2 + s + 2$ is Hurwitz.

2. Find the Y-parameters of the following network.

explain how it effects the actual circuit. I some begins the

	3.	Define the term 'Symmetry'.	2
4	4.	Define 'Band width' and its importance.	2
	5.	State and prove Final value theorem.	3
6	б.	Express T - parameters in terms of h - parameters.	2
-	7.	Define the term "Network Synthesis"?	2
8	8.	Obtain the Laplace Transform of "t cos at".	3
0	9.	List the properties of Positive-Real function.	2
	10.	Explain the effect of addition of zero at infinity in the transfer function and also	

Part B - (Marks: 50)

11. Show that, when two 2-port networks N₁ and N₂ are connected in cascade the equivalent ABCD parameters of the combined network is the product of ABCD parameters of each, individual 2 port Network.

12. In the arrangement of figure given below.

Find the transmission parameters of No?

13. The Fourier Transform of a continuous time signal f(t) is given by

 $F(w) = \frac{10}{jw+4}$. Determine the Fourier transform Y(w) if Y(t) = f(t) cos 2t. 10

14. (a) Find the Laplace transform of the following rectangular wave form. 6

(b) Obtain the Laplace transform of e^{-t} (1+cos 2t).

15. The driving point impedance of an LC network is given by Z(s) =

$$z(s) = \frac{10(s^r + 4)(s^r + 16)}{s(s^r + 9)}$$

Obtain the first form of Foster network.

16. Check whether the following functions is Hurwitz or not.

(a) $P(s) = S^4 + S^3 + 3S^2 + 2S + 2$.

(b) $Q(s) = S^7 + 2S^6 + 2S^5 + S^4 + 4S^3 + 8S^2 + 8S + 4$.

17. Given the driving point impedance function

$$z(s) = \frac{s(s^{r}+2)}{(s^{r}+1)(s^{r}+4)}$$

Synthesize a ladder network of the first cauer form and second cauer form for this impedance function.

10

4

10

10