FACULTY OF ENGINEERING

B.E. II/IV Year (E \& EE) II Semester (Main) Examination, May/June 2011 ELECTRICAL CIRCUITS - II
Time : 3 Hours]
[Max. Marks : 75
Answer all questions from Part A. Answer any five questions from Part B.

Part A - (Marks: 25)

1. Find the range of values ' a ' in $P(s)$. So that $P(s)=2 s^{4}+s^{3}+a s^{2}+s+2$ is Hyryitz.
2. Find the Y-parameters of the following network.

3. Define the term 'Symmetry'.
4. Define 'Band width' and its importance. 2
5. State and prove Final value theorem.3
6. Express T - parameters in terms of h - parameters. 2
7. Define the term "Network Synthesis"? 2
8. Obtain the Laplace Transform of "t cos at". 3
9. List the properties of Positive-Real function. 210. Explain the effect of addition of zero at infinity in the transfer function and alsoexplain how it effects the actual circuit.3
Part B - (Marks: 50)
10. Show that, when two 2-port networks N_{1} and N_{2} are connected in cascade the equivalent $A B C D$ parameters of the combined network is the product of $A B C D$ parameters of each, individual 2 port Network.
11. In the arrangement of figure given below.

Find the transmission parameters of No?
12. The Fourier Transform of a continuous time signal $f(t)$ is given by
$\mathrm{F}(\mathrm{w})=\frac{10}{j w+4}$. Determine the Fourier transform $\mathrm{Y}(\mathrm{w})$ if $\mathrm{Y}(\mathrm{t})=\mathrm{f}(\mathrm{t}) \cos 2 \mathrm{t}$.
13. (a) Find the Laplace transform of the following rectangular wave form.

(b) Obtain the Laplace transform of $\mathrm{e}^{-\mathrm{t}}(1+\cos 2 \mathrm{t})$.
14. The driving point impedance of an LC network is given by $Z(s)=$

$$
z(s)=\frac{10\left(s^{r}+4\right)\left(s^{r}+16\right)}{s\left(s^{r}+9\right)}
$$

Obtain the first form of Foster network.
16. Check whether the following functions is Hurwitz or not.
(a) $\mathrm{P}(\mathrm{s})=\mathrm{S}^{4}+\mathrm{S}^{3}+3 \mathrm{~S}^{2}+2 \mathrm{~S}+2$.
(b) $\mathrm{Q}(\mathrm{s})=\mathrm{S}^{7}+2 \mathrm{~S}^{6}+2 \mathrm{~S}^{5}+\mathrm{S}^{4}+4 \mathrm{~S}^{3}+8 \mathrm{~S}^{2}+8 \mathrm{~S}+4$.
17. Given the driving point impedance function
$z(s)=\frac{s\left(s^{r}+2\right)}{\left(s^{r}+1\right)\left(s^{r}+4\right)}$
Synthesize a ladder network of the first cauer form and second cauer form for this impedance function.

