FACULTY OF ENGINEERING

B.E. 3/4 (E\&EE/Inst.) I Semester (Main) Examination, December 2010 DIGITAL ELECTRONICS AND LOGIC DESIGN

(25 Marks)

$$
\text { 1. Simplify } f(A B C)=A+B^{\prime}+A^{\prime} B^{\prime}+C^{\prime} B^{\prime} \text {. }
$$

2. Give the karnaugh map for the function $\mathrm{f}(\mathrm{wxyz})=\left(\mathrm{w}^{\prime}+\mathrm{x}+\mathrm{y}\right)\left(\mathrm{w}+\mathrm{x}^{\prime}+\mathrm{y}^{\prime}\right)$
3. What are the important features of cmos gates ? Draw a 3-input cmos-NOR gate
and its truth table.
4. Define an incompletely specified function with an example. 2
5. What is the difference between canonical form and standard form ? 2
6. What type of triggering is incorporated in a master - slave J-K flip - flop ? Explain briefly the triggering phenomenon. 2
7. What is a debouncing switch ? Give the circuit diagram of a debouncing switch. 3
8. Convert J-K flip-flop to 'D' flip-flop. 2
9. Explain the state diagram approach for designing counters. 3
10. Explain fun-in, fun-out and propagation delay. 3
11. a) Obtain the simplified expression of the given expression as a product of sums $\mathrm{F}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\pi(0,1,2,3,4,10,11)$
b) Simplify the given function and porlement with NAND gates. $\mathrm{fF}=\mathrm{AC}^{\prime}+\mathrm{ACE}+\mathrm{A}^{\prime} \mathrm{CD}^{\prime}$ $+7 C^{\prime}+A^{\prime} D^{\prime}$ YЯAgㅣㄱ
12. Reduce the Boolean expression given below to minimum number of literals using fabulation method and drawthe tese circuit diagram.
$\mathrm{f}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(0,1,2,8,10,11,14,15)$
13. a) With the help of a neat circuit diagram explain the operation of a TTL NAND gate. What is an open-collector logic and where is it used?
b) Compare the performance of TTL, ECL and CMOS logic gates with reference to fun-in, fun-out, noise immunity and propagation delay. Give typical values in each case.
14. a) Draw the logic diagram of a bounce free manual pulses circuit and explain its operation.
b) Draw the logic diagram of a 3-bit up/down synchronous counter and explain its operation.
15. Design a 3-bit counter to count the sequence $0,1,3,5,7,2,4,6$ and then repeat using T-flipflops.
16. Briefly explain
a) Sequence Detectors
b) Ring counters
17. a) Insert a full adder circuit with multiplexes.
b) Design a BCD to excess-3 code converter with a BCD to decimal decoder and four OR gates.
