FACULTY OF ENGINEERING B.E. 2/4 (E & EE/ECE) I Semester (Main) Examination, December 2010 ELEMENTS OF MECHANICAL ENGINEERING

Part -

Time: 3 Hours]

Note : Answer all questions from from Part – B.

b) Explain the principles of the

(25 Marks)

- 1. Give the classification of thermodynamic systems with examples.
- 2. Compare two stroke and four stroke engines.
- 3. What is Newton's law of cooling ? a lo merge b gain it outsy and ward (a .dl
- 4. Give the classification of heat exchangers.
- 5. Define C.O.P and give the units of refrigeration.
- 6. Explain ammonia-water absorption refrigeration system.
- 7. What are the different types of gas flames in gas welding ?
- 8. What do you mean by wire drawing process?
- 9. What is a compound belt drive ?
- 10. What do you mean by reverted gear trains?

Deschool Color PART - B

(5×10=50 Marks)

- 11. a) Define enthalpy. Compare it with internal energy.
 - b) 30 liters of air expands from an initial pressure of 8 bar and temperature 850° C to a pressure of 1 bar and temperature 200° C. Using reference temperature 0° C, find the change in internal energy, enthalpy and index of expansion during the process. Assume $C_p = 1.005$ and $C_v = 0.718$ kJ/kg K.
- 12. a) State the Fouriers law of heat conduction. Calculate the rate of heat loss for a red brick wall of length 5 m, height 4 m and thickness 0.25 m. The temperature of the inner surface is 110°C and that of the outer surface is 40°C. The thermal conductivity of red brick, k = 0.70 W/mK. Calculate also the temperature at an interior point of the wall, 20 cm distance from the inner wall. (2+4)
 - b) Derive an expression for the LMTD of a parallel flow heat exchanger.

This paper contains 2 pages)

P.T.O.

6

Cod	e N	0.	32	61

13.	a)	With the help of a block diagram, explain the working of simple vapour compression refrigeration system. Show the cycle on T-S and	
010	121	P-H diagrams.	7
	b)	what is heating and humidification process? Represent it on a	2
		psychionicule chart.	3
14.	a)	Explain the principle of arc welding? Give the list of equipment required	
		for electric arc welding.	4
	b)	Explain the principles of the following machining processes	
		a) turning b) drilling c) shaping	6
15.	a)	Explain the four bar chain mechanism with suitable sketches.	5
	b)	Derive an expression for the length of belt in open belt drive.	5
16	-	Compare two stroke and lour stroke engines.	-
10.	a)	Draw the value timing diagram of a 4-stroke SI engine.	3
	b)	A single cylinder, 4 stroke cycle I.C engine was tested and following to results were obtained	
		Mean height of indicator diagram – 21 mm	
		Indicator spring number = $27 \text{ kN/m}^2/\text{mm}$	
		Swept volume of cylinder = 14 Liters	
		Speed of engine = 396 rpm	
		Effective brake load = 77 kg	
		Effective brake radius = 700 mm	
		Fuel consumption $= 0.002 \text{ kg/sec}$	
		Calorific value of fuel = 44000 kJ/kg	
		Determine a) indicated power b) brake power c) mechanical efficiency	
		d) indicated thermal efficiency e) brake thermal efficiency.	7
17	W	rite short notes on any four of the following .	10
1/.	~	Clausing in any four of the following .	10
	a)	Critical reduce of insulation following the fouriers law of heat conduction	
	0)	Thermoelectric refrigeration	
	() d)	Forming process	
	(U)	Condition for maximum norman transmission of flat 1 h 1	
	(9	Condition for maximum power transmission of flat belt drive.	

Code No. . . .