## FACULTY OF ENGINEERING

## B.E. $2 / 4$ (E \& EE/Inst.) I Semester (Main) Examination, December 2010 <br> ELECTRONIC ENGINEERING - I

Time : 3 Hours]
[Max. Marks : 75

##  <br> Note: 1) Answer all ques ions of Pa <br> 2) Answer five qued ham $t$. <br> (25 Marks)

1. Determine ac resistance for a semiconductor diode having a forward bias of 200 mV and reverse saturation current of $1 \mu \mathrm{~A}$ at room temperature.
2. What do you meant by the terms 'forward- recovery time and reverse-recovery time' of a junction diode? ..... 2
3. What are 'emitter injection efficiency' and 'base transport factor' and how do they influence the transistor operation? ..... 3
4. What do you mean by punch through effect ? ..... 2
5. How the forced turn-off of an SCR is different from natural turn off? ..... 3
6. Differentiate between diac and triac. ..... 2
7. State the Miller's theorem. ..... 2
8. Give the difference between cascading and cascade configuration. ..... 3
9. List out the classification of amplifiers. ..... 2
10. Define the terms lower cut-off frequency, upper cut-off frequency and Band width. ..... 3
PART - B
11. a) A single phase full-wave rectifier makes use of $\pi$-section filter with two $10 \mu \mathrm{~F}$ capacitors and a choke of 10 H . The secondary voltage is $280 \mathrm{~V}_{\text {rms }}$ with respect to centre tap. If the load current is 100 mA , determine the dc output voltage and percentage ripple in the output. Assume supply frequency of 50 Hz .
b) Explain about the temperature dependence of P-N diodes.
12. a) In a self biased CE amplifier circuit comprising $R_{2}=90 \mathrm{k} \Omega, R_{1}=10 \mathrm{k} \Omega$ $\mathrm{V}_{\mathrm{cc}}=22.5 \mathrm{~V}, \mathrm{R}_{\mathrm{c}}=5.6 \mathrm{k} \Omega$ and $\mathrm{R}_{\mathrm{E}}=1.0 \mathrm{k} \Omega$ and a BJT with $\mathrm{B}_{\mathrm{o}}=55$ and $\mathrm{V}_{\mathrm{BE}}=\mathrm{ov}$. Find the operating point and stability factor S of the circuit. ..... 8
b) List out the limitations of h-parameters ..... 2
13. a) Prove that the transconductan 50 m of a Fe es is given by$\mathrm{g}_{\mathrm{m}}=\frac{2}{\left|\mathrm{~V}_{\mathrm{p}}\right|} \sqrt{\mathrm{I}_{\mathrm{DS}} \cdot \mathrm{I}_{\mathrm{DSS}}}$.

b) What is the significant difference between the construction of an enhancement type MOSFET and a depletion type MOSFET ? ..... 4
14. a) Explain briefly about various coupling schemes used in cascade amplifiers. ..... 5
b) Discuss the operation of the High input impedance transistor circuit. ..... 5
15. a) In an amplifier the maximum voltage gain is 1500 and occurs at 1 kHz . It falls to 1060.5 at 20 Hz and 20 kHz . Determine (i) lower cut-off frequency (ii) upper cut-off frequency and (iii) band width. ..... 5
b) List out the merits, demerits and applications of transformer coupled transistor amplifier. ..... 5
16. a) Explain why MOSFETs are never connected or disconnected in the circuit when power is ON. Draw the diagram of EMOSFET. ..... 6
b) Bring out the differences between JFETs and MOSFETs. ..... 4
17. Write short notes on any two of the following : ..... 10
a) UJT
b) Difference amplifier
c) CC amplifiers.
