FACULTY OF ENGINEERING

B.E. 2/4 (E \& EE) I Semester (Main) Examination, December 2010 ELECTRICAL CIRCUITS - I

Time : 3 Hours]

[Max. Marks : 75

2. Find the equivalent capacitance for the given combination. 3

3. State and explain Reciprocity theorem and give its application. 3
4. In the network shown find X_{L}. 2

5. The current in a circuit lags the voltage by 30°. If the input power be 480 W and supply voltage be $\mathrm{V}=100 \sin \left(377 \mathrm{t}+20^{\circ}\right)$. Find the complex power.
6. What is the rms value of the periodic waveform shown, where Time period $\mathrm{T}=4 \mathrm{sec}$?

7. A dc voltage of 20 V is applied to an RL circuit where $\mathrm{R}=5 \Omega$ and $\mathrm{L}=10 \mathrm{H}$. Find
a) The time constant and
b) Maximum value of energy stored.
8. A coil produces resonance at 20 KHz in series with a capacitor. Assuming the inductance and resistance of the coil to be 10 H and 100Ω, find Q factor of the coil.
9. A $3 \phi 400 \mathrm{~V}$ load has a power factor of 0.4 . Two Watt meters are connected to measure the power. If the input power be 10 KW . Find the reading of each instrument.
10. How filters are classified ? mention the different types of filters.
PART - B
11. a) Find the power loss in 1Ω resistor.

b) A current wave $i(t)$ is applied to an inductance of 10 H . Find $\mathrm{V}(\mathrm{t})$ and sketch it.

12. a) Find the voltage across 40Ω resistor and the power supplied by 5 A source using Nodal analysis method.

b) Find E such that $I_{2}=0$.

13. a) Determine the current in 8Ω resistor by Norton's theorem.

b) Determine the value of R so that maximum power is transferred to it.

14. a) For the circuit shown below find $V_{c}(t)$ for all time in the circuit.

b) In the circuit shown below let $\mathrm{i}_{\mathrm{e}}(\mathrm{t})$ be expressed as the complex response $20 \mathrm{e}^{\mathrm{j}}\left(40 \mathrm{t}+30^{\circ}\right) \mathrm{A}$ and express V_{s} as a complex forcing function.

15. a) Select the values of R_{1} and R_{2} in the circuit shown below so that

$$
\mathrm{V}_{\mathrm{R}_{2}}\left(0^{+}\right)=10 \mathrm{~V} \text { and } \mathrm{V}_{\mathrm{R}_{2}}(1 \mathrm{~m} \mathrm{sec})=5 \mathrm{~V}
$$

b) A series combination of 12Ω resistance and $600 \mu \mathrm{~F}$ capacitance is connected to a $220 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Estimate the current, active power, reactive power and apparent power. Draw the phasor diagram.
16. a) A RLC series circuit is to be designed to produce a magnification of 5 at $1000 \mathrm{rad} / \mathrm{sec}$. A 120 V source is connected to RLC series circuit can supply maximum current of 8 A . The half power frequency impedance of the circuit is 32Ω. Find the values of R, L and C.
b) Determine the value of R_{L} for resonance in the network shown. Also calculate the dynamic resistance.

17. a) A balanced 3ϕ load is connected to a balanced 3ϕ voltages of 230 volts between lines and is instrumented for power measurement using two wattmeter method. The phase sequence is ABC . The wattmeter in line A reads 2.5 KW and in line B reads 0.5 KW . Calculate the
i) Power factor of the load
ii) Line current and
iii) Load impedances assuming star connection.
b) Three identical impedances of $18 L_{-} 30^{\circ} \Omega$ in delta and three impedances of $1045^{\circ} \Omega$ in star are both connected to same $3 \phi 3$ wire, 440 V system. Find the magnitude of line current and total power.

