FACULTY OF ENGINEERING

B.E. 2/4 (CE/EE/ ECE/Inst./Mech./Prod./CSE) I-Semester (Main) Examination,

November / December 2012

Subject : Mathematics-III

Time : 3 Hours

Max. Marks: 75

(2)

(3)

(3)

(2)

(2)

(5)

(5)

Note: Answer all questions of Part - A and answer any five questions from Part-B.

- 1. Find a partial differential equation from $(x a)^2 + (y b)^2 + z^2 = 9$ by eliminating arbitrary constants a and b. (3)
- 2. Solve $p^{3}q^{2}x + p^{2}q^{3}y zp^{2}q^{2}=1$.
- 3. Find the Fourier coefficient 'a₁' of the Fourier series expansion of $f(x)=x \sin x$ in $(0, 2\pi)$. (2)
- 4. Find the half-range sine series for e^x in (0, 1).
- 5. Solve $\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y}$ by the method of separation of variables. (3)
- 6. Show that $u(x, y) = 6e^{-3x-2y}$ is a solution of $\frac{\partial u}{\partial x} 2\frac{\partial u}{\partial y} u = 0$. (2)
- 7. Using Bisection method, find the first two approximations to the root of the equation $x^3-4x-9=0$ which lies in (2, 3).
- 8. Construct Newton's divided difference table for

х	5	6	9	11
у	12	13	14	16

9. Determine the Z transform of $\{e^{n-2}\}$.

10. If
$$Z{f_n} = \frac{3z^2 - 4z + 7}{(z-1)^3}$$
, then find f_1 . (3)

PART – B (5x10=50 Marks)

11.(a) Solve
$$x(y^2 - z^2)p + y(z^2 - x^2)q = z(x^2 - y^2).$$
 (5)
(b) Solve $z^2 = xypq.$ (5)

12.(a) Explain f(x) = | sinx |, - π < x < π in a Fourier series.
(b) Find the complex form of the Fourier series of the function

$$f(x) = \begin{cases} 0, & 0 < x < \ell \\ a, & \ell < x < 2\ell \end{cases}$$

(10)

(5)

(10)

13. A homogeneous rod of conducting material of length 100 cm has its ends kept as zero temperature and the temperature initially is $u(x,0) = \begin{cases} x, & 0 \le x \le 50\\ 100-x, & 50 \le x \le 100 \end{cases}$

Find the temperature u(x, t) at any time.

14.(a) Compute $\frac{d^2y}{dx^2}$	at x = 1 from the table
------------------------------------	-------------------------

Х	1	2	3	4	5	6
у	1	8	27	64	125	216

(b) Find the approximate value of y(1.1) for $\frac{dy}{dx} = 3x+y^2$, y(1)=1.2 by Runge-Kutta method of fourth order. (5)

- 15.(a) Using convolution theorem, find the inverse z transform of $\left(\frac{z}{z-1}\right)^3$. (5)
 - (b) Solve $y_{n+2} 3y_{n+1} + 2y_n = 0$, $y_0 = -1$, $y_1 = 2$ using Z transform. (5)
- 16. Solve $r t \cos^2 x + p \tan x = 0$ using Monge's method.

17.(a) Perform the first two iterations of Gauss-Seidel iteration method to solve 4x-y + z = 4, -x + 4y - z = 2 and x - y + 4z = 4. (5) (b) State and prove initial value theorem. (5)
