FACULTY OF ENGINEERING

B.E. $2 / 4$ (CE/EE/ ECE/Inst./Mech./Prod./CSE) I-Semester (Main) Examination,

November / December 2012

Subject : Mathematics-III
Time : 3 Hours
Max. Marks: 75
Note: Answer all questions of Part - A and answer any five questions from Part-B.

PART - A (25 Marks)

1. Find a partial differential equation from $(x-a)^{2}+(y-b)^{2}+z^{2}=9$ by eliminating arbitrary constants a and b .
2. Solve $p^{3} q^{2} x+p^{2} q^{3} y-z p^{2} q^{2}=1$.
3. Find the Fourier coefficient ' a_{1} ' of the Fourier series expansion of $f(x)=x \sin x$ in $(0,2 \pi)$.
4. Find the half-range sine series for e^{x} in $(0,1)$.
5. Solve $\frac{\partial z}{\partial x}=\frac{\partial z}{\partial y}$ by the method of separation of variables.
6. Show that $\mathrm{u}(\mathrm{x}, \mathrm{y})=6 \mathrm{e}^{-3 x-2 y}$ is a solution of $\frac{\partial u}{\partial x}-2 \frac{\partial u}{\partial y}-u=0$.
7. Using Bisection method, find the first two approximations to the root of the equation $x^{3}-4 x-9=0$ which lies in $(2,3)$.
8. Construct Newton's divided difference table for

x	5	6	9	11
y	12	13	14	16

9. Determine the Z transform of $\left\{e^{n-2}\right\}$.
10. If $Z\left\{f_{n}\right\}=\frac{3 z^{2}-4 z+7}{(z-1)^{3}}$, then find f_{1}.

$$
\text { PART - B (} 5 \times 10=50 \text { Marks })
$$

11.(a) Solve $x\left(y^{2}-z^{2}\right) p+y\left(z^{2}-x^{2}\right) q=z\left(x^{2}-y^{2}\right)$.
(b) Solve $z^{2}=x y p q$.
12.(a) Explain $\mathrm{f}(\mathrm{x})=|\operatorname{sinx}|,-\pi<x<\pi$ in a Fourier series.
(b) Find the complex form of the Fourier series of the function

$$
f(x)=\left\{\begin{array}{lc}
0, & 0<x<\ell \tag{5}\\
a, & \ell<x<2 \ell
\end{array}\right.
$$

..2..

13. A homogeneous rod of conducting material of length 100 cm has its ends kept as zero temperature and the temperature initially is $u(x, 0)=\left\{\begin{array}{cc}x, & \\ x & \leq x \leq 50 \\ 100-x, & 50 \leq x \leq 100\end{array}\right.$

Find the temperature $u(x, t)$ at any time.
14.(a) Compute $\frac{d^{2} y}{d x^{2}}$ at $x=1$ from the table

x	1	2	3	4	5	6
y	1	8	27	64	125	216

(b) Find the approximate value of $y(1.1)$ for $\frac{d y}{d x}=3 x+y^{2}, y(1)=1.2$ by Runge-Kutta method of fourth order.
15.(a) Using convolution theorem, find the inverse z transform of $\left(\frac{z}{z-1}\right)^{3}$.
(b) Solve $y_{n+2}-3 y_{n+1}+2 y_{n}=0, y_{0}=-1, y_{1}=2$ using Z transform.
16. Solve $r-t \cos ^{2} x+p$ tan $x=0$ using Monge's method.
17.(a) Perform the first two iterations of Gauss-Seidel iteration method to solve $4 x-y+z=4$, $-x+4 y-z=2$ and $x-y+4 z=4$.
(b) State and prove initial value theorem.

