Max. Marks: 75

FACULTY OF ENGINEERING

B.E. 2/4 (ECE) I-Semester (Main) Examination, November / December 2012

Subject : Electromagnetic Theory

Note: Answer all questions of Part - A and answer any five questions from Part-B.

Time: 3 Hours

PARI – A (25 Marks)	
State uniqueness theorem.	(3)
2. Determine laplacian of scalar field A=x²y+xyz.	(2)
3. What is displacement current?	(2)
4. Given E(z,t)=100 cos (10 9 t+30z) for a plane wave. Find phase velocity assuming μ = μ 0.	(3)
5. Define surface impedance.	(2)
6. Write Maxwell equation in sinusoidal variation.	(3)
7. Find electric field E at (0, 3, 4) in Cartesian co-ordinate system due to point charge Q=0.5 μ C at (0, 0, 0).	(2)
8. Determine the work expended in carrying 2C from B(1,0,1) to A(0.8, 0.6,1) along the shorter arc of circle $x^2+y^2=1$ and $z=1$ for the field $E=ya_x+xa_y+2a_z$.	(3)
9. Define Amper's force law.	(2)
10. What is skin depth in copper 1GHz, if σ =5.7x10 ⁷ mho/m?	(3)
DART D (Fre40-F0 Montes)	
PART – B (5x10=50 Marks) 11.(a) State and prove divergence theorem.	(7)
(b) Give vector field A=5 x^2 $\left(\frac{\sin \pi x}{2}\right)$ a _x find divergence A at x=1.	(3)
(b) Give vector field $\mathcal{N}=3\mathcal{X}$ (2) $\mathcal{A}_{\mathcal{X}}$ find divergence \mathcal{N} at $\mathcal{X}=1$.	(5)
12.(a) Derive an expression for energy stored in the electrostatic field in terms of E and	
D.	(6)
(b) Find the potential and electric field between the two right concentric cylinders where V=0 at r_a =1mm and V=200 at r_b =20 mm.	(4)
13.(a) Find H at center of square loop of side L.	(5)
(b) Show that $\nabla^2 A = -\mu J$ where A is vector magnetic potential.	(5)
14.(a) Show that E and H in free space is $\sqrt{\frac{\mu}{c}}$.	<i>(</i> 5)
14.(a) Show that E and Hill free space is $\sqrt{-}$.	(5)
(b) A uniform plane wave is incident from air onto glass at an angle from the normal of 45°. Determine the fraction of the incident power that is reflected and transmitted for Parallel polarization. Glass has a refractive index 1.45.	(5)
15.(a) State and prove Poynting theorem.	(7)
(b) What is Brewster angle and critical angle?	(3)
16.(a) Derive an expression for magnetic field intensity H in an ideal solenoid.	(5)
(b) A boundary exist at y=0 between two dielectric $\in_{r_1}=2.5$ region y<0 and $\in_{r_2}=4$ region y > 0 field in the region of electric field is $E_1 = -30a_x + 40a_y + 50a_z$ V/m. Find (i) Normal component of E_{n_1} (ii) Tangent Component of E_{t_1} (iii) Angle	(0)
(iv) Normal component of D _{n1} .	(5)
17.(a) Derive an equation for Electric and magnetic wave in free space.	(5)
(b) Explain linear, elliptical and circular polarization.	(5)
