Code No. : 5332/N ## FACULTY OF ENGINEERING B.E. 2/4 (ECE) I Semester (New) (Main) Examination, December 2011 ELECTRONIC DEVICES | ELECTRONIC DEVICES | | | |--------------------|--|--------| | Tin | ne: 3 Hours] [Max. Mark | s: 75 | | | Note: Answer all questions from Part A singwer any five questions from Part B. | | | | PART – A ((25 Ma | ırks) | | 1. | Describe in your own words how diffusion and transition capacity aces differ. | 3 | | 2. | A silicon diode dissipates 3W for a forward dc current of 2A. Calculate forward voltage drop across the diode and its bulk resistance. | 2 | | 3. | What is meant by Tunneling effect? | 2 | | 4. | A half-wave rectifier circuit has a 25V (rms) sinusoidal ac input and a 600 Ω load resistance. Calculate the peak O/P voltage, peak load current and the diode peak reverse voltage. Assume $V_F = 0.7 \text{ V}$. | 3 | | 5. | What is the need for biasing a transistor. | 3 | | 6. | The following quantities are measured in a transistor. | 3 | | | $I_C = 5$ mA; $I_B = 100 \mu$ A. Determine α , β and I_E . | | | 7. | Draw the transistor hybrid model for CE transistor configuration. | 2 | | 8. | What is meant by thermal run away? | 2 | | 9. | What are the advantages of MOSFET over JFET? | 3 | | 10. | List the advantages and disadvantages of FET over BJT. | 2 | | | PART – B (50 Mar | ks) | | 11. | a) Consider a p-n alloy-junction germanium diode with $N_D = 10^3 N_A$ and with N_A corresponding to 1 donor atom per 10^8 germanium atoms. Calculate the height E_0 of the potential – energy barriers in electron volts at room temperature. (Assume $n_i = 2.5 \times 10^{13}$ (m ⁻³ at 300° k). | 4 | | ı | b) Explain the V-I characteristics of a zener diode and explain its working as a voltage regulator. | 4
6 | 5 5 5 5 5 5 3 7 4 6 3 3 4 $S \le 3$. Find R_e , R_1 , R_2 . Assume $r_d > > R_d$. Find b) Explain the operation of UJT. amplifier A_v, A_{vs}, A_{is}, R_{in} and R_{out}. Bias compensation techniques of BJT. b) g_m 12. a) Explain the operation of center tapped FW rectifier with π filter. with a ripple factor not to exceed 0.001%. b) Design a power supply using π -section filter to given dc O/P of 25V at 100 mA c) R_s 13. a) Explain how transistor acts as an amplifier, give an example. b) What is early effect? Explain how it affects the BJT characteristics in common base 15. a) Why are the h-parameters preferred to analyse a circuit using BJT. b) A BJT having $h_{ie} = 1500 \ \Omega$, $h_{fe} = 100$, $h_{re} = 2 \times 10^{-5}$ and $h_{oe} = 25 \times 10^{-6}$ A/V is used as an emitter follower amplifier with R_S = 1000 Ω and R_L = 500 Ω . Determine for the 16. a) Sketch and explain the small-signal model of an FET at low frequencies. b) An n-channel JFET amplifier uses FET for which $V_P = -2.0 \text{ V}$, $g_{mo} = 1.60 \text{ mA/V}$ and d) R_d. $I_{DSS} = 1.65$ mA. It is desired to bias the circuit at $I_D = 0.8$ mA. Using $V_{DD} = 24V$. Such that the voltage gain is atleast 20 dB, with $\rm R_{\rm s}$ by passed with a very large capacitance C_s. 17. Write short notes on the following: a) TRIAC b) LED a) V_{GS}