FACULTY OF ENGINEERING

B.E. $2 / 4$ (ECE) II Semester (Main) Examination, May/June 2011

 SIGNAL ANALYSIS AND TRANSFORM TECHNIQUES
Time : 3 Hours]

[Max. Marks : 75
Note: Answer all questions from Part - A. Answer any five questions from Part - B.

PART - A

1. Test whether the ramp function is energy signal (Lr power signal.
(Marks : 25)
2. The signal $f(t)=3 t$ for $0 \leq t \leq 4$ and is periodic wwith period 4 . What are the harmonics present?
3. If the Fourier transform of $f(t)$ is $F(w)$, what is the Fourier transform of $f(a t)$?
4. Define the Bandwidth of a signal.
5. State the condition in terms of impulse response for a system to be causal.
6. What is the FT of a unit step function ?
7. For a left sided sequence $x(n)$, draw the ROC in the z-plane.
8. If the z-transform of a sequence is $x(z)$, what is the z-transform of $n x(n)$?
9. What is the relation between convolution and correlation?
10. State the properties of cross correlation.

PART - B

(Marks : 50)
11. (a) Derive the expressions for the Fourier series coefficients:
(b) For the periodic waveform shown in Fig.(1) determine the Fourier series coefficients.

Fig. (1)
12. (a) Find the $F T$ of the signal $f(t)=t e^{-a t} u(t)$.
(b) State and prove Parseval's theorem of FT.

Code No. : 3280
13. (a) State and prove scaling property of L-transform.
(b) If the L-transform of $x(t)$ is $X(s)=\frac{4}{(s+2)^{2}}$, find the L-transform of $g(t)=x(2 t-2)$.
14. (a) Find the inverse L-transform of $X(s)=\frac{4(s+1)}{s^{2}+2 s+2}$
(b) The transfer function of a system is $1+(s)=\frac{s+2}{(s+3)(s+4)^{2}}$

Sketch the pole-zero plot and test the stability of the system.
15. (a) Find the z-transform and the ROC for the sequence, $x(n)=0.8^{n} u(n)$.
(b) State and prove convolution property of z-transform.
16. (a) Find the inverse z-transform of $x(t)=\frac{z+1}{(z+0.2)(z-0.6)}$
(b) For the system given by the difference equation, draw the canonical form realization diagram.
$y(n)+0.5 y(n-1)+2 y(n-2)+3 y(n-3)+0.8 y(n-4)=3 x(n)+5 x(n-2)$.
17. (a) State and prove the properties of auto correlation.
(b) Compute the convolution of $h(t)$ and $x(t)$ where $h(t)=e^{-\alpha t} u(t)$, $x(t)=e^{\alpha t} u(-t)$ and $\alpha>0$.

