FACULTY OF ENGINEERING

B.E. 2/4 (ECE) II Semester (Main) Examination, May/June 2011 PULSE, DIGITAL \& SWITCHING CIRCUITS

Time : 3 Hours.]

[Max. Marks : 75
Note : Answer all questions of Part - A. Answer five questions from Part - B.
PART - A

1. Sketch the step response of a high pass $R C$ circuit.
2. Match the following :

A

B

(1) Integrator
(a) Reduce the amplitude of the signal
(2) Attenuator
(b) Required Diodes, Resistors \& Capacitor
(3) Clamper
(c) Required Diodes and Resistors only
(4) Clipper
(d) Low Pass RC circuit.
(e) High Pass RC circuit.
3. Compare UJT and SCR.
4. Draw the circuit of a Schmitt trigger.
5. Show the Truth Table for the following function and find its simplest product of sum form :

$$
f(x, y, z)=\bar{x}+y \bar{z}
$$

6. Simplify the following algebraic expression :

$$
\bar{w} \bar{x}+\bar{x} \bar{y}+\bar{w} \bar{z}+y z
$$

7. Express T as a function of $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$.

8. Design Half adder with NAND gates only. 3
9. Convert a JK to D flip-flop.
10. Write the excitation table of SR and JK flip-flop.
11. (a) Compare Differentiator and Integrator::
(b) Design a circuit to obtain the following transfer characteristic :

12. (a) Draw the circuit of a monostable multivibrator and derive an .
expression for pulse width.

(b) Plot the waveform at the base and collector of each transistor.
13. Find the minimal SOP and POS Expression for the following expression using K-map : 10
$f(w, x, y, z)=\sum m(0,1,4,5,6,7,9,11,15)+$ $\mathrm{d}(10,14)$
14. Design a circuit which converts a BCD code to 7 segment display code. 10
15. Design a contact network, with four input relays, w, x, y and z, which receives BCD numbers and produces a signal whenever the present number is 3 or multiple of 3 10
16. Design a 3 bit synchronous up counter using JK flip-flop. 10
17. Write short notes on any two :
(a) Symmetric Network 5
(b) Clamping Circuit 5
(c) Sweep Circuit 5

