FACULTY OF ENGINEERING

B.E. $2 / 4$ (ECE) II Sem.(Main) Examination, May/June 2011

Networks \& Transmission Lines

Time : 3 Hours]

[Max. Marks : 75
Note: Answer all questions from Part A, answer any five questions from Part B.
PART - A

1. Show that for any two port bilateral network $A D-B C=1$
2. Define z-parameters of a typical four terminal network.
3. How the value of m is decided in m-derived filters ? Explain.
4. What is reflection coefficient and VSWR for a matched load?
5. Design symmetrical T attenuator for $\mathrm{R}_{0}=600 \Omega \& \alpha=20 \mathrm{~dB}$.
6. What are the limitations of constant K filters ?
7. Why short circuit stubs are preferred over open circuit stubs ?
8. Show that $\lambda / 4$ transformer acts as like impedance inverter.
9. What are the special features of the telephone cable ?
10. On a transmission line terminated in a load VSWR is measured as ' 2 '. What \% of power will be reflected back ?

PART - B

(50 Marks)
11. (a) For a two port network shown in fig. (1) calculate the value of Y_{12}.

(b) Verify whether network of fig. (1) is reciprocal or not. .
12. (a) Design L- type matching section to match 50Ω to 400Ω. 6
(b) Find characteristic impedance of the π section shown.

13. Design composite T section low pass filter with the specifications given $R_{0}=600 \Omega \quad F_{c}=1000 \mathrm{kHz} \mathrm{f}_{\infty}=1200 \mathrm{kHz}$.
14. (a) Differentiate between various methods of network synthesis.
(b) Synthesize the given real impedance function in caller forms :
$z(s)=\frac{(s+1)(s+2)}{(s+3)}$
15. (a) Show that for a short circuit line of length $!$ " with propagation constant β, input impedance is $z_{s c}=j z_{o} \tan \beta /$. where z_{o} is characteristic impedance.
(b) Derive relationship between VSWR and reflection co-efficient.
16. '(a) Transmission line of 50Ω, length 0.2λ is terminated in $(100+j 200) \Omega$ load. Find input impedance using Smith chart. What is VSWR on line?
(b) Give design equations and steps for single stub matching using Smith chart.
17. Write short notes on:
(a) Loading of a line
(b) Notch filter
(c) Phase Equalizer

