Code No.: 3277

FACULTY OF ENGINEERING

B.E. II/IV Year (ECE/Mech./Prod./CSE/Auto Mobile Engg.) II Semester (Main) Examination, May/June, 2011

MATHEMATICS - IV

Time: 3 Hours]

Answer all questions of Part A.

Answer five questions from Part B.

Part A-(Marks: 25)

- 1. For the function f(Z) = Z the following is true.
 - (a) f(z) is not continuous at Z = 0
 - (b) f(z) is differentiable at every point.
 - (c) f(z) is not differentiable at every point.
 - (d) None of above.
- 2. Find $\xi c \frac{2z^3 + 4z}{Z 2i}$ d₂ where C is the circle |2| = 4.
- 3. Expand the function $f(z) = e^z$ in Taylor's series about z = 1.
- 4. Residue of $f(z) = \cot z$ at singular points (a) 1 (b) 0 (c) $\pi/2$ (d) $\pi/2$
- 5. A random variable X has the following probability distribution

X	0	. 1	2	3	4
p(x)	k	k	2k	k ²	$3k^2$
find D (v /3)				

- 6. If f(x) is density function of continuous random variable X, then the moment generating function of X about x=a is ———.
- 7. X is a normal variate with mean 30 and standard deviation 5. Find the probabilty that $26 \le x \le 40$.
- 8. Write the equations of line of regression of x on y and y on x.
- 9. Find the student's t for the following variable in a sample of eight –4, –2, –2, 0, 2, 2, 3, 3 taking the mean of the universe to be zero.
- 10. State the following true or false.
 - (a) The variable of poission distribution with parameter $\lambda = 2$ then variance of poisson distribution is 4.
 - (b) Standard normal variable parameters are 0 and 1.

- 11. (a) State and prove Cauchy's integral theorem.
 - (b) Prove that the function f(z) defined by:

$$f(z) = {x^3 (1+i) - y^3 (1-i) \over x^3 + y^2}$$
 O, if $z = 0$

satisfies C-R equations but f'(0) does not exist.

- 12. (a) State and prove residue theorem.
 - (b) Evaluate $\int_{0}^{d} \frac{\cos ax}{\cos ax} dx$
- 13. (a) Define expectation of Random variable. The probability density function of a random variable is given by $f(x) = \begin{cases} \frac{1}{2} (x+1), & -1 \le x \le 1 \\ 0, & \text{elsewhere} \end{cases}$

then fin E(x) and variance of X.

(b) The joint probability density function of continous random variable (X, Y) is given $f(x, y) = ke^{-(x+y)} x > 0, y > 0.$

Find the value of k.

14. (a) Fit a Poission distribution to the set of observations:

x:	0	1	2	3 4
f:	122	60	15	2. 1

- (b) Find mean and variance of normal distribution.
- 15. Find coorrelation co-efficient between x and y for the given values. Find the two regression lines also.

x:.	1	2	3	4	5	6	7.	8	9	10
y:	10	12	16	28	25	36	41	49	40	50

- 16. (a) If f(z) is analytic function with constant modules, show that f(z) is constant.
 - (b) State and prove Baye's theorem.
- 17. (a) Expand $f(z) = \frac{1}{(z-1)(z-2)}$ in the region $|\angle|z| \angle 2$.
 - (b) The values in two random samples are given below:

Sample 1: 15 25 16 20 22 24 21 17 19 23

Sample 2: 35 31 25 38 26 29 32 34 33 27 29 31

Can we conclude that the two samples are drawn from the same population. Test at 5% level of significance.