FACULTY OF ENGINEERING

B.E. (III/IV Year) (ECE) II Semester (Main) Examination, June 2010

DIGITAL SIGNAL PROCESSING
Answer all questions from Part A. Answer any five questions from Part B.

1. Obtain condition for causality of a system and give an example for a causal system.
2. Check the stability of the system whose impulse response is $h(n)=\left(\frac{1}{2}\right)^{n} u(n)$. 2
3. Find DFT of the sequence $x(n)=\left[\begin{array}{llll}-1 & 2 & 0 & 1\end{array}\right]$. 3
4. Write the properties of twiddle factor.
5. Using impulse invariance method transform $H(s)=\frac{2}{(s+1)(s+2)}$ into $H(z)$. Assume $T=1 \mathrm{sec}$.
6. Compare Butterworth and Chebyshev filters. 2
7. Discuss Gibb's phenomenon. 3
8. State the differences between DIT FFT and DIF FFT. 2
9. What are the various addressing modes in TMS 320C 54XX processors. 3
10. Briefly discuss the operation of CSSU in TMS processor. 2

Part B $-($ Marks : $5 \times 10=50)$
11. Sketch the magnitude and phase response of the system whose impulse response is given by $\boldsymbol{h}(\boldsymbol{n})=\frac{1}{2} \delta(\boldsymbol{n})+\delta(\boldsymbol{n}-\boldsymbol{1})+\frac{1}{2} \delta(\boldsymbol{n}-2)$.
12. Find 4 -point DFT and 8 -point DFT of the sequence $x(n)=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$ plot magnitudesand phases of DFT and comment on result.
13. (a) Find DFT of the sequence $x[n]=\left[\begin{array}{lll}0 & 1 & 2\end{array}\right]$ using DIT FFT. 5
(b) Discuss about Bit reversal and in place computation. 5
14. Using the bilinear transform, design a HPF, monotonic in pass band with cut-off frequency 1000 Hz and 10 dB down at 350 Hz , with sampling frequency of 5000 Hz 10
15. (a) Compare FIR and IIR filters. 3
(b) Design an ideal differentiator with frequency response $H\left(e^{j w}\right)=j w \quad-\pi \leq \mathrm{w} \leq \pi$ using rectangular window for $N=8$. 7
16. (a) Draw the architecture of TMS 320C 54XX Processor. 5
(b) Compare RISC and CISC CPU. 5
17. Write short notes on any three of the following : 10(a) Limit cycle oscillations(b) Finite wood length effects(c) Zero padding(d) Warping effect.

