Code No.: 6337

FACULTY OF ENGINEERING

B.E. (III/IV Year) (ECE) II Semester (Main) Examination, June 2010

DIGITAL SIGNAL PROCESSING

Time : 3 Hours]

[Max. Marks: 75

Answer **all** questions from Part A. Answer any **five** questions from Part B.

Part A - (Marks 25)

1. Obtain condition for causality of a system and give an example for a causal system.

	$n_{1} \approx 1$	
2.	Check the stability of the system whose impulse response is $h(n) = \left(\frac{1}{2}\right) u(n)$.	2
3.	Find DFT of the sequence $x(n) = [-1 \ 2 \ 0 \ 1]$.	3
4.	Write the properties of twiddle factor.	2
5.	Using impulse invariance method transform $H(s) = \frac{2}{(s+1)(s+2)}$ into $H(z)$. Assum	me
	T = 1 sec.	3
6.	Compare Butterworth and Chebyshev filters.	2
7.	Discuss Gibb's phenomenon.	3
8.	State the differences between DIT FFT and DIF FFT.	2
9.	What are the various addressing modes in TMS 320C 54XX processors.	3
10.	Briefly discuss the operation of CSSU in TMS processor.	2

Part B – (Marks : 5 × 10 = 50)

11. Sketch the magnitude and phase response of the system whose impulse response is given by $h(n) = \frac{1}{2}\delta(n) + \delta(n-1) + \frac{1}{2}\delta(n-2)$. 10

12.	Fin and	d 4-point DFT and 8-point DFT of the sequence $x(n) = [1 \ 1 \ 1]$ plot magnitud l phases of DFT and comment on result.	les
13.	(a)	Find DFT of the sequence $x[n] = [0 \ 1 \ 2 \ 3]$ using DIT FFT.	5
	(b)	Discuss about Bit reversal and in place computation.	5
14.	Usi free 500	ng the bilinear transform, design a HPF, monotonic in pass band with cut- quency 1000 Hz and 10 dB down at 350 Hz, with sampling frequency 00 Hz.	off of 10
15.	(a)	Compare FIR and IIR filters.	3
	(b)	Design an ideal differentiator with frequency response $H(e^{jw}) = jw - \pi \le w$ using rectangular window for $N = 8$.	≤π 7
16.	(a)	Draw the architecture of TMS 320C 54XX Processor.	5
	(b)	Compare RISC and CISC CPU.	5
17.	Wr	ite short notes on any three of the following :	10
	(a)	Limit cycle oscillations	
	(b)	Finite wood length effects	
	(c)	Zero padding	
	(d)	Warping effect.	
		Definition and the operation of CSSU in TMS processor.	