FACULTY OF ENGINEERING
B.E. 2/4 (ECE) I Semester (Main) Examination, December 2010 ELECTROMAGNETIC THEORY
Time : 3 Hours]

PART - A
[Max. Marks : 75
Note: 1) Answer all questio (2f Bearro
2) Answer five question from Pof B.

1. Write the expression for $\nabla \times \overrightarrow{\mathrm{A}}$ in cylindrical co-ordinates. 2
2. Write the expression for the Dirac delta function $\delta\left(\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{r}_{0}}\right)$ in cylindrical and spherical co-ordinate systems. 3
3. For a two dimensional system in which $r=\sqrt{x^{2}+y^{2}}$. Write the expression for $\nabla^{2} V$. 3
4. A scalar function V is independent of ' x ' and ' z '. The gradient of V is ' $20 y$ ' in the y-direction. Given $V=10$ at $y=0$, find ' V '. 3
5. Determine the divergence and curl of $\vec{A}=x^{2} \vec{a}_{x}-y^{2} \vec{a}_{y}$ where $\vec{a}_{x}, \overrightarrow{a_{y}}$ are unit vectors along x and y axis respectively.3
6. A circular loop of 10 cm radius is located in the $x-y$ plane in a \vec{B} field given by $\vec{B}=(0.5 \cos 37 t)\left(3 \overrightarrow{a_{y}}+4 \overrightarrow{a_{z}}\right)(T 1$ determine the voltage induced in the loop).3
7. Express the magnetic vector potential directly in terms of source current. 2
8. A losses dielectric has $\epsilon_{\mathrm{r}}=10, \mu_{\mathrm{r}}=1, \sigma=20 \mathrm{nS} / \mathrm{m}$. An electric field $\overrightarrow{\mathrm{E}}=200 \sin \omega t \overrightarrow{\mathrm{a}}_{\mathrm{z}}(\mathrm{V} / \mathrm{m})$ exists in the dielectric. At what frequency will the conduction current density and the disfacement current density have equal amplitudes ?
9. Show that for a sinusoidally vary Nin formate nduction current and the displacement current are always dispinced from *ach other by 90° in time.
10. The electric and magnetic fields in free space in a spherical co-ordinate system are
$\vec{E}=\frac{10}{r} \sin \theta \cos \left(\omega t-\frac{4 \pi}{3}\right) \overrightarrow{a_{\theta}} V / m$
$\overrightarrow{\mathrm{H}}=\frac{10}{120 \pi \mathrm{r}} \sin \theta \cos \left(\omega \mathrm{t}-\frac{4 \pi}{3}\right) \overrightarrow{\mathrm{a}_{\phi}} \mathrm{A} / \mathrm{m}$
Determine the instantaneous power flow.
PART - B
11. a) Determine by integration, the volume ' V ' of a region defined in a cylindrical co-ordinate system as $1 \leq \mathrm{r} \leq 2 \mathrm{~m}, 0 \leq \phi \leq \frac{\pi}{3}$ radians, and $0 \leq \mathrm{z} \leq 1 \mathrm{~m}$. Sketch the appropriate figure.
b) Derive the identity $\operatorname{div}(g \vec{F})=g \operatorname{div} \vec{F}+(\operatorname{grad} g) \cdot \vec{F}$ where \vec{F} is any vector field and ' g ' is any scalar field.
12. a) A circular disk of radius 3 m carries a uniformly distributed charge of $450 \pi \mu \mathrm{C}$. Calculate the force on a $75 \mu \mathrm{C}$ charge located on the axis of the disk and 4 m from its centre. Draw the appropriate figure.
b) Obtain an expression for the capacitance of an isolated sphere of radius ' R '.
13. a) Derive a set of solutions to Laplace's equation in cylindrical co-ordinates starting with $\mathrm{V}=\mathrm{R} \phi$.
b) A very long conducting cylinder of radius ' a ' has a charge ' q ' Coulombs/meter distributed along its length. Find the electric field strength E in air normal to the surface of the cylinder.
14. a) Obtain an expression for the magnetic field intensity \vec{H} at a distance ' r ' from the center within a conductor carrying a current I. The radius of the wire is ' R '. The current density is constant across the cross-section of the conductor.
b) From the expression $r=\sqrt{j \omega \mu(\sigma+j \omega \varepsilon)}$ derive the expressions for α, β. The expression symbols have their usual meaning.
15. a) Prove for parallel polarization that $\frac{E_{r}}{E_{i}}=\frac{\tan \left(\theta_{1}-\theta_{2}\right)}{\tan \left(\theta_{1}+\theta_{2}\right)}$. The symbols have their usual meanings.
b) Determine the reflection co-efficient for an electromagnetic wave incident normally on a sheet of iron. The corresponding parameters are :

Frequency (f) $=1 \mathrm{MHz}$
$\sigma($ iron $)=1 \times 10^{6} \mathrm{~m}$ hos $/ \mathrm{m}$.
$\mu=1000 \mu_{0}$
$\mu_{0}=4 \pi \times 10^{-7}$ henry $/ \mathrm{m}$.
16. a) A point charge ' q ' is located at a distance ' h ' above an infinite ground plane which is a conductor. Find the displacement density normal to the plane. Obtain an expression for surface charge density on the plane.
b) An infinitely long cylinder of radius ' a ' is filled with a charge of uniform density ' ρ '. If the potential on the surface of the cylinder is V_{0}, what is the potential within the cylinder?
17. a) Evaluate the line integral of the vector field $\vec{F}=\vec{a}_{x}+2 \vec{a}_{y}+\vec{a}_{z}$ along a circular arc of unit radius from $(1,0,1)$ to $(0,1,1)$.
b) Using the statement of ampere's work law for elemental area in cylindrical co-ordinates derive the expansion for $\nabla \times \overrightarrow{\mathrm{H}}$ in these co-ordinates.

