FACULTY OF ENGINEERING
 B.E. $2 / 4$ (ECE) II Semester (Main) Examination, June 2010 PULSE, DIGITAL AND SWITCHING CIRCUITS

Time: 3 Hours]
[Max. Marks: 75

Note: Answer all questions from Part A. Answer any five questions from Part B.

$$
\mathrm{PART}=\mathrm{A}
$$

(25 Marks)

1. Show the circuit of a compensating attenuator and give the relation for proper compensation.
2. \qquad multivibrator can be used as a voltage to frequency converter.
(Astable/Monostable/Bistable)
3. Compare the performance of series clipper with shunt clipper. 2
4. What is the principle of Miller sweep circuits? 2
5. Prove that NAND gate is an universal gate. 2
6. Show a prime implicant chart and comment on the reduction procedure. 2
7. Discuss the procedure adopted for testing a function for symmetry. 3
8. Design half subtractor with NAND gates only. 3
9. Convert 'D' flip flop to 'T' flip flop. 3
10. Write the truth table of SR, JK, T and D flip flop. 3
PART - B
11. a) Why a High Pass $R C$ circuit is called a differentiator? 3
b) A symmetrical square wave whose average value is zero has a peak to peak amplitude of 20 volts and a period of 2 micro second. This waveform is applied to a low-pass circuit whose upper 3 dB frequency is $1 / 2 \pi \mathrm{MHz}$. Calculate and sketch the steady state output waveform. In particular, what is the peak-to-peak output amplitude ?
12. a) With references the binary circuit, explain the role of the commutating capacitors. 3
b) Design an Astable multivibrator to generate a 5 KHz square wave with a duty cycle equal to 60% amplitude 10 volts. Use NPN transistor having $\mathrm{h}_{\mathrm{FE}(\min)}=60 \mathrm{I}_{\mathrm{C}(\max)}=50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{BE}(\mathrm{sat})}=0.7$ volt, $\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}=0.2$ volt. Show the circuit diagram and all the waveforms.

7

13. a) Discuss the various methods of improving sweep linearity in voltage time base generators and derive the expression for sweep speed error in each case.
b) Draw the circuit diagram of a Boot strap voltage time base generators and explain its operation with waveforms. Derive the expression for its sweep amplitude, sweep period, retrace interval and recovery time.
14. a) Using Switching algebra simplify the following expressions :

$$
\begin{align*}
& \text { i) } \mathrm{f}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{x}+\mathrm{xyz}+\overline{\mathrm{x}} \mathrm{yz}+\mathrm{wx}+\overline{\mathrm{w}} \mathrm{x}+\overline{\mathrm{x}} \mathrm{y} \\
& \text { ii) } \mathrm{f}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=(\mathrm{w}+\mathrm{x}+\mathrm{y}+\mathrm{z})(\mathrm{x}+\mathrm{y}+\mathrm{z})(\mathrm{y}+\mathrm{z})(\mathrm{z}) \text {. } \tag{6}
\end{align*}
$$

b) Find the TT for the following switching function :

$$
\begin{equation*}
\mathrm{f}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\mathrm{AB} \overline{\mathrm{C}} \mathrm{D}+\mathrm{ABC} \overline{\mathrm{D}} . \tag{4}
\end{equation*}
$$

15. For the function
$\mathrm{T}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\sum \mathrm{m}(0,1,2,3,4,6,7,8,9,11,15)+\sum \mathrm{d}(10,13)$
a) Find all prime implicants. 5
b) Find the essential prime implicants.
16. Design MOD-13 synchronous counter using T-FF. Explain all design steps clearly. Draw its output with respect to clock input.
17. Write short notes on any two :
a) UJT
b) Clamping theorem
c) Contact N.W.
