Code No. : 6123

FACULTY OF ENGINEERING B.E. 2/4 (ECE) II Sem. (Main) Examination, June 2010 NETWORKS AND TRANSMISSION LINES

Time: 3 Hours]

[Max. Marks : 75

Note : Answer all questions from Part $-A$, answer any five questions from Part $-B$.	
PART - A (25)	Marks)
1. State and explain reciprocity theorem.	3
2 Everage V. Parameters in 7 parameters	2
2. Express 1 - Farameters in Z-parameters.	4
3. Design a symmetrical T attenuator with $R_0 = 600 \Omega$ and attenuation of 10	db. 3
4. Define image parameters of a two port network. What is insertion loss ?	3
5. List the advantages of m-derived filters.	2
6. Find the cutoff frequency of the filter shown below :	2
63.7 mH $63.7 mH$	
TO.1768 MF	
0	
7. What is reflection co-efficient and VSWR for	
a) Open Circuit	
b) Short Circuit Lines ?	2
8. What is the condition for a line to be distortion-less ? Define various types	of
distortions.	3
9. Define primary and secondary constants of a transmission lines.	3
10. List the applications of Smith Chart.	2
(This paper contains 3 pages) 1	P.T.O.

2

Code No. : 6123

11. a) Find the Z-parameters of resistive network shown below :

- 12. a) Explain about Image impedances and Image Transfer constant for a two port Network.
 - b) Find the attenuation and characteristic impedance of a network shown below. 5

. Che image permeters of a two port network. What is in

13. a) Design a composite T- section low-pass filter with $f_c = 3.3$ KHz, $Z_0 = 600 \Omega$ and $f_{\infty} = 3.6$ KHz.

b) What are the limitations of constant K-filters ? How are they avoided by using m-derived filters ?nameta to stantando yashnoosa bas yasming on Define grimary and secondary constants of a transmission of a line of the secondary secondary constants of a transmission of the secondary s

22

2 2

20

3

- 7

5

7

14.	Derive the formula of input impedance of a transmission line in terms of Z_0 , I, γ and Z_R . Where these parameters have useful meaning, what are the applications of quarter waveline 2	10
	of quarter wavenine ?	10
15.	a) A transmission line of characteristic impedance of 100Ω is terminated in a	
	load $Z_{L} = (200 + 1100) \Omega$. Design a single stub to match the line to the load	
	using Smith chart.	6
	b) Compare single stub matching with double stub matching.	4
16.	Derive the transmission line equations. State the condition for distortionless	
	transmission line and verify its significance.	10
17.	a) Design L type matching section to match 400 Ω to 100 Ω impedance.	4
	b) Give the units of all h-parameters.	3
	c) Derive the relation between reflection coefficient and VSWR.	3