FACULTY OF ENGINEERING

B.E. 2/4 (CSE) I – Semester (Main) Examination, November / December 2012

Subject: Logic and Switching Theory Time: 3 Hours Max.Marks: 75

iiiie.	3 Hours Wax.Warks	s . 73
Note: Answer all questions from Part – A. Answer any <u>five</u> questions from Part – B.		
	PART – A (25 Marks)	
1. Co	nvert the decimal number (47.625) ₁₀ into binary, octal and hexadecimal.	(2)
2. Co	envert the $(1101011)_2$ to hexadecimal number system.	(2)
3. Re	alize the 4x1 multiplexer using 2x1 multiplexer.	(2)
4. Ex	press the function in canonical sum of products form $F(x,y,z) - xy' + yz'$	(2)
5. Co	envert the given function in sum of max terms $F(x,y,z) = xyz + xy'z'$	(2)
6. Re	alize full subtractor using Half-subtractor.	(3)
7. Dra	aw the minimal contact network for the function $F(x,y,z) = xyz + xyz' + xy'z$	(3)
8. Dis	stinguish between synchronous and asynchronous counters.	(3)
9. Re	alize X-NOR gate using NAND gates.	(3)
10. Wr	rite the exertation and characteristic table of JK flip flop.	(3)
PART – B (50 Marks)		
, ,	Simplify the Boolean function using theorems. (i) ABC + AB' + ABCD + AB'D (ii) (x+y) (x+y+z') (x+z+y')	(5)
(b)	Express the complement of the function given in product of Maxterms and draw the $F(x,y,z) = f(0,2,4)$ logic diagram using NAND gates only.	(5)
12.(a)	Simplify the function using K-map method and realize using basic gates only. $F(A,B,C,D) = (0,1,2,4,5,8,10,11,14)$.	(5)
(b)	Express the function and realize with minimum num of gates $F(w,x,y,z) = (1,3,5,7) + d(4,8,10)$.	(5)
13.	Design a BCD – to – Excess-3 code converter and realize with minimum no. of gates.	(10)
14.(a)	Design a 4x16 decoder using 2x4 decoders only.	(5)
(b)	Write a VHDL-code to design mod-10 counter using JK flip-flops.	(5)
15.(a)	Write a procedure to identify whether a given function is symmetric or not.	(5)
(b)	Draw the contact network for the function $F(w,x,y,z) = (1,2,4,6,9,10,11)$.	(5)
16.	Design a combinational circuit to realize full-adder using NAND-gates only.	(10)
17.	Write short notes on: (a) Logic synthesis (b) Shift registers.	(10)
