FACULTY OF ENGINEERING

B.E. 2/4 (Civil) II Semester (Main) Examination, May/June 2011
 SURVEYING - II

Time : 3 Hours]
Note : Answer all questions from Part - A. Answer any five questions from Part - B.

PART - A

(Marks : 25)

1. State the need of measurement of angles of repetition method.
2. In a closed traverse, algebraic sum of latitudes and departures were calculated as $\Sigma \mathrm{L}=+1.34$ and $\Sigma \mathrm{D}=-2.18 \mathrm{~m}$ respectively. Determine the bearing of the closing error.
3. Define a depletion angle and list out different types of deflection angles.
4. State the essential requirements of a transition curve.
5. Write the use of tacheometric alidade in contouring by plane table surveying.
6. Write the significance of reduction by calculations in tacheometric surveying.
7. State the significance of axis signal correction applied for geodetic observations.
8. Write the use of lasers in micro-optical EDM.
9. How do you determine the length of a vertical curve ?
10. Write the disadvantages of keeping the staff vertical.

PART - B

(Marks : $\mathbf{5 \times 1 0 = 5 0)}$
11. (a) What are different types of errors which can occur in theodolite surveying ? How would you avoid them?
(b) State different types of permanent adjustments of a theodolite. 4
12. (a) What is index error in a theodolite ? Briefly describe a method to remove it.
(b) State the various methods of balancing a closed traverse. State under what circumstances each one is preferred.
13. Determine the level difference between stations P and Q and the value of coefficient of refraction, for the given data : 10
Angle of elevation of Q at $P=1^{\circ} 43^{\prime} 0^{\prime \prime}$.
Angle of depression of P at $Q=1^{\circ} 42^{\prime} 12^{\prime \prime}$.
Height of instrument at $P=1.24 \mathrm{~m}$ and at $\mathrm{Q}=1.35 \mathrm{~m}$.
Height of signal at $Q=4.34 \mathrm{~m}$ and at $P=3.95 \mathrm{~m}$.
The distance between P and $Q=7134 \mathrm{~m}$. Take $R \sin 1^{\prime \prime}=30.88 \mathrm{~m}$.
14. (a) Two straight lines having an intersection angle of 25° are to be connected by a circular curve radius 500 m . If the chainage of the intersection point is 1000 m , caiculate the data for setting out the curve by deflection distances method. 5
(b) Derive a relationship between the radius and the degree of curve. 5
15. (a) Write various problems in setting out curves. How would you circumvent these problems in the field? 6
(b) Write the advantages and working principle of total station. 4
16. (a) What is meant by sounding ? Write various methods of taking soundings. 5
(b) The following readings were taken with a tacheometer on to a vertical staff : 5

Horizontal distance	Stadia readings (m)
46.5 m	$0.780 ; 1.010 ; 1.240$
64.3 m	$1.860 ; 2.165 ; 2.470$

Calculate the tacheometric constants.
17. Write short notes on any two of the following:
(a) Methods of setting out of vertical curves.
(b) Beaman's Stadia Arc.
(c) Types of Reverse Curves.

