Code No.: 3015

FACULTY OF ENGINEERING

B.E. II/IV Year (Civil) II Semester (Main) Examination, May/June 2011
 STRENGTH OF MATERIALS - II
 [Max. Marks : 75
 Time : 3 Hours]

1. How do you find slopes in beam by moment area method.
2. The B.M at a section of a conjugate beam represents what?
3. What is the difference between "elastic" and "rigid" props?
4. In a fixed beam of 4 m span carrying a central load of 10 KN , what is the fixed and moment developed.
5. Name 5 theories of failure. 3
6. What do you understand by "angle of twist".
7. Write the formula for finding deflection in a closely coiled helical spring subjected to an axial twist.
8. What is the difference between "impact load" and "suddenly applied load". 3
9. Write the secant formula. Explain the terms involved. 3
10. For the analysis of space trusses which method you prefer. 2

Part B - (Marks : $5 \times 10=50$)
11. A simply supported beam of span L carries a uniformly varying triangular load of intensity zero at left support and "w" at right support. Find the slope at left support and central deflection.
12. A fixed beam of span 6 m carries a point load of 10 KN at 4 m from left support. Find the fixed and moments and sketch the B.M and S.F diagrams marking the salient values.
13. Analyse the 3-span continuous beam loaded as shown below in fig.1. Sketch the B.M and S.F diagrams.

Fig. 1.
14. (a) Derive the formula for finding the critical load in a long column of length L, fixed at both ends, having flexural rigidity = EI.

Or

(b) Write the effective lengths L_{e} ' for 4 different and conditions, taking the actual length of each column as L .
15. (a) At a point in a strained material there are direct stresses (tensile) P_{x} and P_{y} acting at right angles to one another accompanied by a state of simple shear "of". Draw the Mohr's circle of stress and explain the determination of principal stresses and principal planes.
(b) Calculate the max torque a shaft of 120 mm dia can transmit if the max angle of twist is 1^{0} in a length of 1.5 m if its rigidity modulus $=70 \mathrm{GPa}$.
16. Find the thrusts in each leg of a tripod subjected to a vertical load W. The length of each leg is L. The feet of 3 legs form an isoscelus triangle of side " L " on the ground. Use tension coefficient method.
17. (a) Using castigliano's theorem find the deflection at the free end of a cantilever of length L, carrying a u.d.l. of "w" per m.
(b) Derive the deflection formula in the case of a carriage spring. Assume other details and give a neat sketch also.

