FACULTY OF ENGINEERING B.E. 2/4 (Civil) II Semester (Main) Examination, June 2010 ELECTRICAL TECHNOLOGY – Part – A

Time: $1^{1}/_{2}$ Hours]

Note : Answer all questions from Part A Answer any three questions from Part B.

DADT

(14 Marks)

[Max. Marks: 38

	Cive a brief RABBLE Culations of street lighting.	(5)
1.	Compare series and parallel circuits of d.c. sources.	2
2.	An alternating voltage has the equation $v = 141.4 \sin 377 t$; what are the value of ;	
	(a) rms value of voltage (b) frequency.	3
3.	Define form factor and effective value.	2
4.	A 250 kVA, 11000 V/415 V, 50 Hz, $1-\phi$ transformer has 80 turns on the secondary. Calculate :	
	a) I_1 and I_2 b) N_1	*
	c) Maximum value of the flux.	3
5.	How does the rotor of $3-\phi$ induction motor rotates ? Explain.	2
6.	Define polar curves.	2
	PART – B (24 Mar	ks)
7.	Derive the expression for current of R-L-C series circuit.	8

8. The primary and secondary windings of a 500 kVA transformer have resistances of 0.42Ω and 0.0019Ω respectively. The primary and secondary voltages are 11,000 V and 415 respectively and coreloss is 2.9 kW, assume power factor of the load be 0.8. Calculate the efficiency on full load.

1

(This paper contains 2 pages)

8

Code No.

Code No. : 6019/A

8

5

3

5

3

9. Explain with phasor diagrams how the rotating magnetic field rotates at

synchronous speed. And also prove that $\phi = \frac{3}{2}\phi_{max}$.

10. Discuss briefly about :

- i) Open circuit and short circuit test of $1-\phi$ transformer.
- ii) List out the application of $3-\phi$ induction motor.

11. i) Give a brief note on calculations of street lighting.

- ii) If a 6-pole induction motor supplied from a three phase 50 Hz supply has a rotor frequency of 2.3 Hz, calculate :
 - a) the % slip
 - b) the speed of rotor.

(a) rms value of voltage (b) frequency

Define form factor and effective value

 $1 \ge \Lambda 250 \text{ kVA}$, 11000 V/415 V, 20 HZ, 1- ϕ fransformer has 80 turns on the secondary Calculate.

at bas it is

7 14 (d

well and the autor marries and to