FACULTY OF ENGINEERING
 B.E. $2 / 4$ (Civil) II Semester (Main) Examination, June 2010 ELECTRICAL TECHNOLOGY - Part-A

Time: $1 \frac{1}{2}$ Hours]
Note: Answer all questions from PartsefAnswer any three questions frowepart B.
PART - A

1. Compare series and parallel circuits of d.c. sources. 2
2. An alternating voltage has the equation $v=141.4 \sin 377 \mathrm{t}$; what are the value of ;
(a) rms value of voltage (b) frequency. 3
3. Define form factor and effective value. 2
4. A $250 \mathrm{kVA}, 11000 \mathrm{~V} / 415 \mathrm{~V}, 50 \mathrm{~Hz}, 1-\phi$ transformer has 80 turns on the secondary. Calculate :
a) I_{1} and I_{2}
b) N_{1}c) Maximum value of the flux.3
5. How does the rotor of $3-\phi$ induction motor rotates? Explain. 2
6. Define polar curves. 2
PART - B(24 Marks)
7. Derive the expression for current of R-L-C series circuit. 88. The primary and secondary windings of a 500 kVA transformer have resistancesof 0.42Ω and 0.0019Ω respectively. The primary and secondary voltages are$11,000 \mathrm{~V}$ and 415 respectively and coreloss is 2.9 kW , assume power factor ofthe load be 0.8 . Calculate the efficiency on full load.8
8. Explain with phasor diagrams how the rotating magnetic field rotates at synchronous speed. And also prove that $\phi=\frac{3}{2} \phi_{\max }$.
9. Discuss briefly about :
i) Open circuit and short circuit test of 1- ϕ transformer. 5
ii) List out the application of 3- ϕ induction motor. 3
10. i) Give a brief note on calculations of street lighting.
ii) If a 6-pole induction motor supplied from a three phase 50 Hz supply has a rotor frequency of 2.3 Hz , calculate :
a) the $\%$ slip
b) the speed of rotor.
