FACULTY OF ENGINEERING & INFORMATICS

B.E. I Year (New) (Common to all Branches) (Main) Examination, June 2011

ENGINEERING PHYSICS

Time : 3 Hours]

[Max. Marks: 75

(Marks : 25)

3

2

2

2

Note : Answer all questions from Part – A. Answer any five questions from Part – B.

PART - A

- 1. A soap film (n = 1.33) in air is 320 nm thick. If it is illuminated with white light at normal incidence, what colour will it appeared be in reflected light? 3
- 2. Two Nicols have parallel polarizing directions so that the intensity of transmitted light is maximum. Through what angle must either Nicol be turned if intensity is to drop by one-fourth of its maximum value ? 2
- 3. Compare and contrast between Bose-Einstein and Fermi-Dirac Statistics. 3
- 4. Calculate the value of poynting vector at the surface of the sun if the power radiated by the sun is 3.8×10^{26} W and its radius is 7×10^8 m.
- 5. The first order diffraction is found to occur at a glancing angle of 9°. Calculate the wavelength of X-rays and the glancing angle for second order diffraction if the spacing between the adjacent planes is 2.51Å.
- 6. For an intrinsic semiconductor having band gap $E_g = 0.7 \text{ eV}$, calculate the density of holes and electrons at room temperature (27 °C). Given $K = 1.38 \times 10^{-23} \text{ j/K}$ and $h = 6.62 \times 10^{-34} \text{ J}$.
- 7. Draw the nature of magnetic dipole moments and variation of susceptibility with temperature graphs in ferro-ferri-and anti-ferromagnetic materials. 3
- 8. Explain the isotopic effect in superconductors.
- 9. Write few applications of nano materials.
- 10. Explain how X-diffraction is used in charactering the nano materials.

PART – B(Marks : 50)11. (a)Obtain an expression for the Intensity of diffraction pattern in case of
Fraunhofer diffraction at single slit, and obtain the condition for
minima of different orders.8

(b) Explain the construction of quarterwave plate.

2

Discuss the properties of wavefunction. 12. (a) 2 Using Schrödinger time independent wave equation, discuss the (b) nature of a particle moving across the potential barrier and define quantum tunnelling. 8 Discuss the free electron theory of metals. 5 13. (a) Explain, how, Kronig-Penny model of solids lead to energy band (b) formation. 5 14. (a) Explain the phenomenon of ferroelectricity and discuss how dielectric constant of Barium titanate changes as its temperature is decreased. 7 Write few applications of ferroelectrics. (b) 3 15. What are thin films ? Describe the chemical vapour deposition (a) method of preparation of thin films. 5 Write a note on solar-cells. 5 (b) 16. (a) Explain the construction and working of Ruby-laser. 5 Using Bose-Einstein distribution law obtain the Planck's law of black-(b) body radiation. 5 17. Write a note on : Concept of fermi level in semiconductors. (a)2 Type I and Type II superconductors. 4 (b) TEM. Is which and the average of the denoted of the denoted of the TEM. 4 (C)