FACULTY OF ENGINEERING \& INFORMATICS

B.E. I Year (New) (Common to all branches) (Main) Examination, June 2011 ENGINEERING MECHANIC

Time: 3 Hours]
[Max. Marks : 75
Note : Answer all questions from Part - A. Answer any five Questions from Part - B.
PART - A

1. State Lami's theorem.
2. What are the different conditions of equilibrium ?
3. State Pappu's Theorem I and II.
4. Differentiate static friction and dynamic friction.

5. State perpendicular axis theorem. 3
6. The notion of a particle is defined by the relation $x=t^{4}-12 t^{2}-40$. Where x is expressed in metres and t in sec. Determine the position velocity and acceleration when $\mathrm{t}=25 \mathrm{sec}$.
7. Determine the force P that will give the body shown below an acceleration of $0.25 \mathrm{~g} . \mathrm{m} / \mathrm{sec}^{2}$. The coefficient of kinetic friction is 0.22 .

8. Derive work-energy principle.
9. A body weighing 80 N is pulled up on a smooth plane by a force ' P ' as shown. Determine the velocity of the block after 5 sec .

10. Differentiate direct central impact and oblique central impact.

PART - B

(Marks : 50)
11. (a) Find the resultant of a system of force.

(b) A bar 12 m long and of negligible weight is acted upon by forces as shown in Fig. Determine angle θ for equilibrium of bar

12. A circular disc of 250 mm radius is removed from a circular disc of 500 mm radius as shown below. Centre of both lines are on same horizontal line. Locate centroid.

13. Block A weighing 1100 N rests over block B that weights 2200 N as shown. Block A is tied to wall with a horizontal string. If M between A and B is $1 / 4$ and between B and floor is $1 / 3$. What should be the value of P to move the block B if
(a) P is horizontal
(b) P acts 40° upwards to horizontal ?

14. Find the product of inertia for hatched area about the axes $X Y$ and y.

15. An elevator of gross weight of 5 kN starts to more upwards with a constant acceleration and acquires a velocity of $2 \mathrm{~m} / \mathrm{sec}$ after travelling a distance of 3 m . Find the pull in cable during accelerated motion. If the elevator while stopping moves with a constant deceleration from a constant velocity of $2 \mathrm{~m} / \mathrm{sec}$ and comes to rest in 2 sec . Calculate the pressure exerted by a man weighted up. 800 N to the floor during stopping.
16. Two bodies of weight $\mathrm{W}_{\mathrm{A}}=850 \mathrm{~N}$ and $\mathrm{W}_{\mathrm{B}}=500 \mathrm{~N}$ are connected to the two ends of light inextensible string, passing over smooth pulley. The weight W_{A} is placed on rough horizontal surface whose co-efficient of friction is 0.25 and W_{B} is hanging vertically in air. If the system is released from rest and block ' B ' falls through a vertical distance of 2.5 m ; determine the velocity attained by ' B '.
17. (a) State the principle of impulse momentum.
(b) Three balls A, B and C masses $12.5 \mathrm{~kg}, 26 \mathrm{~kg}$ and 55 kg respectively move along the same straight line and in the same direction with velocities of $16 \mathrm{~m} / \mathrm{sec}, 4 \mathrm{~m} / \mathrm{sec}$ and $3 \mathrm{~m} / \mathrm{sec}$. If ' A ' collides with ' B ' and subsequently ' B ' collides with C. Find the final velocities. Assume perfectly elastic impacts.

