# FACULTY OF ENGINEERING AND INFORMATICS <br> B.E. I Year (Common to All Branches) (Main) Examination, June 2010 ENGINEERING MECHANICS 

Time: 3 Hours]

[Max. Marks: 75

PART - A

1. State Lamis theorem.
2. Three parallel forces $\mathrm{F}_{1}, \mathrm{~F}_{2}, \mathrm{~F}_{3}$ are acting on a body as shown below. The body is in equilibrium. If $\mathrm{F}_{1}=250 \mathrm{~N}$ and $\mathrm{F}_{3}=1000 \mathrm{~N}$ and the distance between $F_{1}$ and $F_{2}$ is 1.0 m . Determine the magnitude of force $F_{2}$ and the distance of $F_{2}$ from force $F_{3}$.

3. State Pappu's theorem I and II. ..... 3
4. Differentiate between static and dynamic friction. ..... 2
5. State and prove perpendicular axis theorem. ..... 3
6. Mass moment of inertia of a sphere of mass ' $m$ ' and radius ' $2 r$ ' about any diameter is

$\qquad$ ..... 2
7. Define rectilinear translation and curvilinear translation. ..... 3
8. Explain what is meant by dynamic equilibrium. ..... 3
9. A block of weight 30 N is placed on a smooth inclined plane which makes $45^{\circ}$ with horizontal. Calculate the work done when the block is pulled up by 5 m . ..... 3
10. Determine the length of simple pendulum whose period is 2.5 sec . ..... 2

## PART - B

(50 Marks)
11. Determine the resultant of the system of concurrent forces having the following magnitudes and passing through the origin $(0,0,0)$ and the points

$$
\begin{aligned}
& \mathrm{A}=250 \mathrm{~N}(+13,+7,-3) \\
& \mathrm{B}=450 \mathrm{~N}(-8,-4,+7) \\
& \mathrm{C}=300 \mathrm{~N}(+7,-4,-5)
\end{aligned}
$$

## 12. Find the CG of the section shown below about $X X$ and $Y Y$ axis.


13. Determine the value of force $P$ required to start the wedge shown in Fig. The angle of friction for all the surfaces in contact is $15^{\circ}$.

14. Find the moment of inertia of the section shown below about centroidal $x x$ - and yy axis. Also find the least radius of gyration.

15. a) A stone is thrown vertically upwards with a velocity of $19.6 \mathrm{~m} / \mathrm{sec}$ from the top of the tower 24.5 m high.

Calculate :
i) The time required for the stone to reach the ground.
ii) Velocity of the stone in its downward travel; at the point in the same level as the point of projection.
iii) The maximum height to which the stone will rise in its flight.

Take $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{sec}^{2}$.
b) A bullet of mass 80 gm and moving with a velocity of $300 \mathrm{~m} / \mathrm{sec}$ is fired into a $\log$ of wood and it penetrates to a depth of 10 cm . If the bullet moving with the same velocity were fired into a similar piece of wood 5 cm thick, with what velocity would it merge ? Also find the force of resistance assuming it to be uniform.
16. A system of frictionless pulleys carries two weights hung by cords as shown. Find the tension in the cords and acceleration of the system.10

17. a) Define the stiffness of a spring.
b) Two springs of stiffness $k_{1}$ and $k_{2}$ are connected in series. Upper end of the compound spring is connected to a ceiling and the lower end carries a load W . Find the equivalent spring stiffness of the system.
If above two springs are connected in parallel then find the equivalent spring stiffness of the system also.

