## FACULTY OF ENGINEERING

B.E. 3/4 (Mech.) II-Semester (New)(Main)Examination, May 2013

Subject : Heat Transfer
Time : 3 Hours
Max. Marks: 75
Note: Answer all questions of Part - A and answer any five questions from Part-B.
PART - A (25 Marks)

1. What is Fourier's law of conduction? State the assumptions on which this law is based.
2. Derive the equation for steady state heat conduction is a composite slab with fluid flowing on the surfaces.
3. Explain importance of insulated tip solution for the fins used in practice.
4. Derive an expression for temperature distribution in a lumped system.
5. Define the critical Reynold's number.
6. Differentiate between natural and forced convention.
7. Define solid angle with help of a diagram.
8. Calculate the shape factor F12 of the figure shown below

9. Write a formula to calculate the overall heat transfer coefficient based on outer diameter and inner diameter and with following factor.
10. What do you mean by pool boiling ? How does it differ from forced convention boiling?
PART - B (50 Marks)
11. Consider a slab of thickness 1.2 cm whose thermal conductivity is $25 \mathrm{~W} / \mathrm{m} . \mathrm{K}$. Heat is generated within the slab at the rate $10^{8} \times \mathrm{W} / \mathrm{m}^{3}$. Calculate the temperature for the following conditions. Assume $\mathrm{T}_{\mathrm{a}}=120^{\circ} \mathrm{C}$,
$\mathrm{h}=4000 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K}$
(a) Both sides of the slab have different temperatures, given that $\mathrm{T}_{2}=300^{\circ} \mathrm{C}$.
(b) Both sides of the slab have the same temperature, given that $T_{\max }=600^{\circ} \mathrm{C}$
(c) The wall is insulated at $x=0$, if $T_{2}=120^{\circ} \mathrm{C}$
(d) The wall is insulated at $x=0$, and heat is connected away into the fluid at $x=L$.
12. A metal plate of 5 cm thickness is initially at $300^{\circ} \mathrm{C}$. Suddenly it is exposed to an ambient at $30^{\circ} \mathrm{C}$ with a convective heat transfer coefficient of $500 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ calculate.
(a) The centre temperature at $\mathrm{t}=2$ minutes after the start of the cooling.
(b) The temperature at a depth of 1.0 cm from the surface at $t=2$ minutes offer the start of the cooling.
(c) The energy removed from the plate during this time of 2 minutes. Assuming surface area of $2 \mathrm{~m}^{2}$.
Assume $\mathrm{K}=60 \mathrm{~W} / \mathrm{m}-\mathrm{K}, \mathrm{C}=460 \mathrm{~J} / \mathrm{kg}, \rho=7850 \mathrm{~kg} / \mathrm{m}^{3}$
$\alpha=1.6 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$ of the metal plate
13. The resistance $R$ experienced by a partially submerged body depends upon the velocity V , length of the body I, viscosity of the fluid, density of the fluid and gravitational accelerating ' $g$ '. Establish a suitable relation involving non-dimensional groups.
14. Two black discs each of diameter 50 cm are placed parallel to each other concentrically at a distance of one meter. The disc are maintained at 1000 K and 500 K respectively. Calculate the heat flow between the discs.
(i) When no other surface is present
(ii) When the are connected by a cylindrical black no-flux surface.
15. Saturated water vapour at 25 bar enters into the tube of a shell and tube type of heat exchanger. The flow rate of saturated water vapour is $1 \mathrm{~kg} / \mathrm{s}$. The water vapour is to be subcooled to $200^{\circ} \mathrm{C}$. The water is used as a coolant at the rate of $5 \mathrm{~kg} / \mathrm{s}$ available at $15^{\circ} \mathrm{C}$. Calculate the area required for the following case.
(a) Parallel flow (b) Counter flow. Assume an overall heat transfer coefficient of $1100 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$.
16. A cylindrical fin is attached to an outer surface of a furnace to transfer heat. The temperature of the outer surface of the furnace is $30^{\circ} \mathrm{C}$. The diameter of the fins is 3 cm and length is 50 cm . The temperature at the tip of the fin is $50^{\circ} \mathrm{C}$. Assume a connective heat transfer coefficient of $25 \mathrm{~W} / \mathrm{M}^{2} \mathrm{k}$. Calculate
(a) The thermal conductivity of the cylindrical fin and
(b) The rate of heat transfer. Assume ambient temperature $30^{\circ} \mathrm{C}$.
17. Derive the equation for laminar film wise condensation on a vertical plate and show that

$$
\delta=\left[\frac{4 k \mu\left(T_{s a t}-T_{s}\right) x}{g \cdot \rho \ell(\rho \ell-\rho v)_{h f} g}\right]^{1 / 4}
$$

