FACULTY OF INFORMATICS

B.E. 3/4 (IT) II – Semester (New) (Main) Examination, April / May 2013

Subject : Design and Analysis of Algorithms

Time : 3 hours

Max. Marks : 75

Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B.

PART – A (25 Marks)

1.	Define O, Omega and Theta.	3
2.	What is Algorithm specification?	2
3.	Write the control absorption of greedy strategy.	3
4.	Define principle of optimality.	2
5.	Explain O/I knapsack.	3
6.	State traveling salesperson's problem.	2
7.	What is Hamiltonian cycles?	2
8.	Define Biconnected component.	2
9.	What is node covering problem?	3
10	. State cooks theorem.	3

PART – B (50 Marks)

11.a) Briefly explain how to analysis algorithm.	
analyse it.	7
a) Write a greedy algorithm for sequencing unit time jobs with deadline and	5
b) Describe merge sort algorithm and explain with an example.	5
13.a) Explain reliability design problem with an example.b) Explain optimal binary search trees.	7 3
14.a) Write a recursive backtracking algorithm to find all the Hamiltonian cycles of a given graph	
 b) Explain how the branch and bound technique can be used to solve O/I knapsack problem. 	5
15. Explain 8-Queen's problem with an example.	10
16.a) Explain Branch and Bound technique. Give an example.b) Explain NP hard graph problem.	5 5
 17. Write short notes on : a) All pair shortest path b) Optimal storage on tapes c) Graph coloring 	4 3 3