FACULTY OF ENGINEERING

B.E. 2/4 (E\&EE.) II - Semester (Main) Examination, April / May 2013

Subject : Electrical Circuits - II
Time : 3 hours
Max. Marks : 75
Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B.
PART - A (25 Marks)

1. A series RL circuit is excited by a unit step excitation. Then find the circuit response $i(f)$ in the circuit.
2. Define final value theorem.
3. Mention any three necessary conditions that must be satisfied by driving point admittance functions.
4. Find $f(0)$ and $f(\infty)$ for the below function.

$$
\begin{equation*}
F(s)=\frac{s+4}{s(s+1)(s+5)} \tag{4}
\end{equation*}
$$

5. Define 'odd function symmetry'.
6. Find the Fourier transform of $\mathrm{f}(\mathrm{t})=e^{j w_{0} t}$
7. Determine whether the function $F(s)=s^{6}+5 s^{5}+12 s^{4}+16 s^{3}+12 s^{2}+4 s$ is Hurwitz.
8. Synthesize the first Foster term of $z(s)=\frac{\left(s^{2}+2\right)\left(s^{2}+4\right)}{s\left(s^{3}+3\right)}$

PART - B (50 Marks)

9. Find $v_{1}(f)$ and $v_{2}(f)$ for $t>0$ in the network shown below. The switch was in position I for a long time before it is thrown to position 2.

10. Find $v(t)$ for the circuit shown below, using the Laplace transforms method of analysis.

11. Find current $i_{1}(f)$ for $t>0$ if the switch ' k ' is closed at $t=0$ in the below circuit.

12. Find the Fourier series of the waveform show below. Hence find the Fourier series. (10)

13. Synthesize the two carrer forms for the impedance function $\quad z(s)=\frac{(s+3)(s+8)}{(s+2)(s+1)}$
14.a) Write the properties of driving point function $z(s)$ of RC network.
b) Synthesis the second Foster forms for the impedance function

$$
\begin{equation*}
z(s)=\frac{(s+1)(s+4)}{(s+2)} \tag{5}
\end{equation*}
$$

15.a) Find the Fourier transforms for the following function.
i) $u_{0}(t-t o)$
ii) $\mathrm{ca}(2 \mathrm{t}+45)$
b) State and explain complex translation theorem.

