FACULTY OF ENGINEERING

B.E. 2/4 (ECE / M/ P/AE / CSE) II - Semester (Main) Examination, April / May 2013

Subject : Mathematics - IV

Time: 3 hours
Max. Marks : 75

Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B.
PART - A (25 Marks)

1. From the following functions, which is analytic at $z=0$.
a) $|z|^{2}$
b) $1 / z$
c) \bar{z}
d) none of above
2. Find $\oint_{c} \frac{d z}{z^{2}-1}$, where c is the triangle with vertices at $0, \mathrm{a}+\mathrm{bi}-\mathrm{a}+\mathrm{bi}, 0<\mathrm{a}<1$ and $0<b<1$.
3. Expand Cotz in Taylor's series about the point $z=0$.
4. State whether the following are true or false.
a) $f(z)=\frac{1}{z(2-z)}$ has essential singularity at $z=0$, and $z=2$
b) $f(z)=\frac{z-\sin z}{z^{2}}$ has removable singularity at $z=0$.
c) $f(z)=z e^{\frac{1}{z^{2}}}$ has no singularity at $\mathrm{z}=0$.
5. Identify the continuous distributions from the following.
a) Normal distribution
b) Gamma distribution
c) Poisson distribution
d) Binomial distribution
6. The p.d.f. of a continuous random variable X is given by
$f(x)=\left\{\begin{array}{c}\lambda e^{-\lambda x}, \quad x>0 \\ 0, \text { otherwise }\end{array} \quad\right.$ where $\lambda>0$. Find mean and variance of X.
7. Write the applications of F-test.
8. The normal distribution is a limiting form of binomial distribution if
a) $n \rightarrow \infty, p \rightarrow 0$
b) $\mathrm{n} \rightarrow 0, \mathrm{p} \rightarrow \mathrm{q}$
c) $\mathrm{n} \rightarrow \infty, \mathrm{p} \rightarrow \mathrm{n}$
d) $n \rightarrow \infty$ and neither p or nor q is small.
9. Write normal equations to fit the straight line $y=a+b x$ using method least squares.
10.Write the equations of lines of regression y on x and x on y.

PART - B (50 Marks)

11.a) If $f(z)$ is regular function of z then prove that

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2} \tag{5}
\end{equation*}
$$

b) State and prove Cauchy's integral theorem.
12.a) Define Bilinear transformation. Find the bilinear transformation which maps the points $z=1, i,-1$ into the points $w=0,1, \infty$.
b) Show that $\int_{0}^{2 \pi} \frac{\cos 2 \theta}{1-2 a \cos \theta+a^{2}} d \theta=\frac{2 \pi a^{2}}{1-a^{2}},\left(a^{2}<1\right)$.
13.a) Find the mean and variance of the uniform probability distribution given by

$$
\begin{equation*}
f(x)=\frac{1}{n} \text { for } \mathrm{x}=1,2, \ldots \ldots \mathrm{n} . \tag{5}
\end{equation*}
$$

b) For the following probability distribution

$\mathrm{x}:$	-3	-2	-1	0	1	2	3
$\mathrm{P}(\mathrm{x}):$	0.001	0.01	0.1	k	0.1	0.01	0.001

Find k and $E\left(x^{2}+2 x+5\right)$.
14.a) Find the mean and variance of Gamma distribution.
b) The nicotine contents in milligrams in two samples of tobacco were found to be as follows:

Sample	A:	24	27	26	21	25	-
Sample	B :	27	30	28	31	22	36

Can it be said two samples came from same normal population. Test at 5% level of significance.
15.a) Fit a parabola $y=a+b x+c x^{2}$ to the following data

$x:$	2	4	6	8	10
$y:$	3.07	12.85	31.47	57.38	91.29

b) Find the angle between the two regression lines.
16.a) Find the analytic function whose imaginary part is $\frac{2 \sin x \sin y}{\cos 2 x+\cosh 2 y}$
b) Find the correlation coefficient between x and y for the given values. Find also the two regression lines.

$\mathrm{x}:$	1	2	3	4	5	6	7	8	9	10
$\mathrm{y}:$	10	12	16	28	25	36	41	49	40	50

17.a) Expand $f(z)=\frac{z^{2}-6 z-1}{(z-1)(z-3)(z+2)}$ in the region $3<|z+2|<5$.
b) For the following Poisson distribution data, test its goodness of fit at level of significance 0.05 .

$\mathrm{x}:$	0	1	2	3	4
$\mathrm{y}:$	419	352	154	56	19

