FACULTY OF ENGINEERING

B.E. 2/4 (ECE / M/ P/AE / CSE) II – Semester (Main) Examination, April / May 2013

Subject : Mathematics – IV

Time : 3 hours

Max. Marks : 75

Note: Answer all questions from Part-A. Answer any FIVE questions from Part-B.

1.	1. From the following functions, which is analytic at $z = 0$. (2)							
	a) z ²	b) 1/z	c) \overline{z}	d) none of above				
2.	Find $\oint \frac{dz}{z^2 - 1}$, w	vhere c is the tri	angle with ve	rtices at 0, a+bi -a+bi, 0 <a<1 and<="" td=""><td></td></a<1>				
	0 < b < 1.				(3)			
3.	Expand Cotz in	Taylor's series	about the poi	nt z = 0.	(2)			
4.	State whether t				(3)			
	a) $f(z) = \frac{1}{z(2-z)}$	$\frac{1}{z}$ has essentia	l singularity at	z = 0, and z = 2				
	b) $f(z) = \frac{z - \sin z}{z^2}$	has removal	ble singularity	at z = 0.				
	C) $f(z) = z e^{\frac{1}{z^2}}$	has no singula	arity at z = 0.					
5.	Identify the con	tinuous distribu	tions from the	following.	(2)			
	a) Normal distrc) Poisson dist		,	Gamma distribution Binomial distribution				
6.	The p.d.f. of a c	continuous rand	om variable X	is given by	(3)			
	$f(x) = \begin{cases} \lambda e \\ 0, \end{cases}$	$e^{-\lambda x}$, x>0 who there we have $e^{-\lambda x}$ who there we have $e^{-\lambda x}$ who have $e^{-\lambda x}$ where $e^{-\lambda x}$ where $e^{-\lambda x}$ and $e^{-\lambda x}$ where $e^{-\lambda x}$ where $e^{-\lambda x}$ and $e^{-\lambda x}$ and $e^{-\lambda x}$ where $e^{-\lambda x}$ and $e^{-\lambda x}$	nereλ>0. Fi	nd mean and variance of X.				
7.	Write the applic	ations of F-test			(2)			
8.	The normal dist	tribution is a lim	iting form of b	inomial distribution if	(3)			
	,	0 b) $n \rightarrow 0$ nor q is small.	, p → q (c) $n \rightarrow \infty$, $p \rightarrow n$ d) $n \rightarrow \infty$ and				
9.	Write normal e squares.	equations to fit	the straight	line y = a + bx using method least	(2)			
10	.Write the equati	ions of lines of r	regression y o	n x and x on y.	(3)			
					2			

(5)

PART – B (50 Marks)

11.a) If f(z) is regular function of z then prove that

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4 |f'(z)|^2.$$
(5)

- b) State and prove Cauchy's integral theorem.
- 12.a) Define Bilinear transformation. Find the bilinear transformation which maps the points z = 1, i, -1 into the points $w = 0, 1, \infty$. (5)

b) Show that
$$\int_{0}^{2\pi} \frac{\cos 2\theta}{1 - 2a\cos\theta + a^2} d\theta = \frac{2\pi a^2}{1 - a^2}, (a^2 < 1).$$
 (5)

13.a) Find the mean and variance of the uniform probability distribution given by (5)

$$f(x) = \frac{1}{n}$$
 for x = 1,2,....n.

j

b) For the following probability distribution

or the following probability distribution (5)									
x :	-3	-2	-1	0	1	2	3		
P(x) :	0.001	0.01	0.1	k	0.1	0.01	0.001		

Find k and $E(x^2 + 2x + 5)$.

14.a) Find the mean and variance of Gamma distribution.

b) The nicotine contents in milligrams in two samples of tobacco were found to be as follows: (5)

Sample	Α:	24	27	26	21	25	-
Sample	B :	27	30	28	31	22	36

Can it be said two samples came from same normal population. Test at 5% level of significance.

15.a) Fit a parabola $y = a + bx + cx^2$ to the following data

x :	2	4	6	8	10
y :	3.07	12.85	31.47	57.38	91.29

- b) Find the angle between the two regression lines.
- 16.a) Find the analytic function whose imaginary part is

b) Find the correlation coefficient between x and y for the given values. Find also the two regression lines (5)

2 sinx siny

cos2x+cosh2y

								(0)		
x :	1	2	3	4	5	6	7	8	9	10
y :	10	12	16	28	25	36	41	49	40	50
								· · · ·		

17.a) Expand
$$f(z) = \frac{z^2 - 6z - 1}{(z - 1)(z - 3)(z + 2)}$$
 in the region $3 < |z + 2| < 5.$ (5)

b) For the following Poisson distribution data, test its goodness of fit at level of significance 0.05.

x :	0	1	2	3	4
y :	419	352	154	56	19

(5)

(5)

(5)

(5)

(5)