Impulse \& Momentum

For linear motion

$\mathrm{F}=\mathrm{m} \cdot \mathrm{a}=\mathrm{mdv} / \mathrm{dt}$
$\int F \cdot d t=\int m \cdot d v$
$\operatorname{or} F\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)=\mathrm{m}\left(\mathrm{v}_{2}-\mathrm{v}_{1}\right)$
The product of F and dt is called Force Impulseand has N.s as units.
When angular momentum is involved,
$M=I d \omega / d t$
$\int M . d t=\int I \cdot d \omega$
$M\left(t_{2}-t_{1}\right)=I\left(\omega_{2}-\omega_{1}\right)$
The product of M and $d t$ is called Angular Impulse and has N.m.s as units.

Net Impulse $=$ Change in Momentum(linear or angular)

Example 1: A block weighing 130 N starts moving down a slope with a velocity of $2.5 \mathrm{~m} / \mathrm{s}$. Find its velocity after 5 secs. $\mu=0.3$

We may use F.t $=m\left(V_{2}-V_{1}\right)$;
F in the direction of motion $=\mathrm{F} \operatorname{Sin} \theta-\mu \mathrm{F} \operatorname{Cos} \theta$
$=130 \times 5 / 13-0.3 \times 12 / 13 \times 120=50-36=14 \mathrm{~N}$

F.t $=14 \times 5=m\left(V_{2}-V_{1}\right)=(130 / \mathrm{g})\left(\mathrm{V}_{2}-2.5\right) \rightarrow \mathrm{V}_{2}=7.78 \mathrm{~m} / \mathrm{s}$.

Example2: A block of 40 N connected to a pulley $\left(1=3 \mathrm{Kgm}^{2}\right)$ is allowed to move down. Determine the ang .velocity of pulley after 5 sec . Bearing friction $=0.5 \mathrm{Nm}$

Net Angular impulse $=$ M.dt
$=(40 \times 0.10-0.5) \times 5=17.5 \mathrm{Nm}$
Hence M.dt $=I \omega_{2}-I \omega_{1} \rightarrow 17.5=3 \omega_{2}$

$$
\omega_{2}=5.67 \mathrm{rad} / \mathrm{s}
$$

Example 3: A 1500 kg car moves down a 5° slope at 100 kmph , when brakes are applied. The breaking force is constant at 6.5 KN . Find the time taken for the car to come to rest.

Effective force on the car is its weight component minus the braking force. Hence $\left(W \operatorname{Sin} 5^{\circ}-6500\right) t=m V_{2}-m V_{1}=-m V_{1}$
$V_{1}=100 \mathrm{kmph}=100 \times 1000 / 3600=100 / 3.6 \mathrm{~m} / \mathrm{s}$

$(1500 \mathrm{~g} \operatorname{Sin} 5-6500) \mathrm{t}=1500 \times(100 / 3.6) \rightarrow \mathrm{t}=10.08 \mathrm{~s}$

Example 4: A baseball 120 g is pitched with $24 \mathrm{~m} / \mathrm{s}$ velocity and after hit has 36 m / s in the direction shown. If contact is 0.015 s , find average impulse force exerted on the ball.

In view of change in direction, Impulse force has also a component in perpendicular direction.
X din. -- $\quad F_{X} . t=m\left(V_{2 x}-V_{1 x}\right)$
$F_{X} \times 0.015=0.12(36 \operatorname{Cos} 40-(-24))$
$F_{X}=412.6 \mathrm{~N}$
$Y d r n: F_{Y} \times t=m\left(V_{y 2}-V_{y 1}\right)$
$F_{Y} \times 0.015=0.12 \times 36 \operatorname{Sin} 40$

$F y=185 . \mathrm{N}$
$\mathrm{Ft}=452 \angle 24.2^{\circ}$

Example: A 10 kg package at $3 \mathrm{~m} / \mathrm{s}$ is thrown on a cart of 25 kg at 30° angle. Find (a) velocity of cart (b) Velocity impulse by cart on package (c) fraction of energy lost.

$$
\begin{aligned}
& \mathrm{M}_{1} \mathrm{~V}_{1}=\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{V}_{2} \\
& 10 \times 3 \mathrm{cos} 3 \mathrm{~S}^{\prime} \\
& \text { (b) impulse on package is given by: } \\
& \mathrm{M}_{\mathrm{p}} \mathrm{~V}_{1} \operatorname{Cos} 30+\mathrm{F}_{\mathrm{x}} \cdot \Delta \mathrm{t}=\mathrm{m}_{\mathrm{p}} \mathrm{~V}_{2} \\
& 10 \times 3 \operatorname{Cos} 30+\mathrm{F}_{\mathrm{x}} \cdot \Delta \mathrm{t}=10 \times 0.742 \\
& \rightarrow \text { Impulse } \mathrm{F}_{\mathrm{x}} \cdot \Delta \mathrm{t}=-18.56 \mathrm{~N} \cdot \mathrm{~s} \\
& \text { Also along } \mathrm{Y} \text { direction; } \mathrm{m}_{\mathrm{p}} \mathrm{~V}_{1} \sin 30+\mathrm{F}_{\mathrm{y}} \cdot \Delta \mathrm{t}=0 \\
& 10 \times-3 \times 0.5+\mathrm{F}_{\mathrm{y}} \cdot \Delta \mathrm{t}=0 \quad \rightarrow \mathrm{~F}_{\mathrm{y}} \cdot \Delta \mathrm{t}=15 \mathrm{Ns} \\
& \text { Impulse } \mathrm{F} \cdot \Delta \mathrm{t}=23.9 \angle-38.9^{\circ} \\
& \text { (c) Energy lost }=\mathrm{KE} \text { of pack }- \text { final } \mathrm{KE} \text { of (cart + pack) } \\
& =1 / 2 \times 10 \times 3^{2}-1 / 2(10+25) \times 0.742^{2}=45-9.635=35.37 \mathrm{~N} . \mathrm{m}
\end{aligned}
$$

Impulse an pradaje

Example 5: A cylinder is given initial velocity of $0.6 \mathrm{~m} / \mathrm{s}$ along a uphward slope shown. Find the time required to attain $1.2 \mathrm{~m} / \mathrm{s}$.

MI of cylinder about the periphery, $\mathrm{I}=\mathrm{mr}^{2} / 2+\mathrm{mr}^{2}=3 / 2 \mathrm{mr}^{2}$
Force acting on cylinder $=m g \operatorname{Sin} \theta \times r$
Angular Impulse = change in Ang. momentum
$(m g \sin \theta \times r) \times t=I\left(\omega_{2}-\omega_{1}\right)=I\left(V_{2} / r-V_{1} / r\right)$
$=3 / 2 \mathrm{mr}^{2}\left(\mathrm{~V}_{2} / r-\mathrm{V}_{1} / r\right)$
$\rightarrow r \mathrm{gx} 4 / 5 . \mathrm{r} . \mathrm{t}=3 / 2 . \mathrm{r}(-1.2-0.6)$

$\rightarrow \mathrm{t}=5 / 4 \mathrm{~g} \times 3 / 2 \times 1.8=0.35 \mathrm{~s}$.
Time is a function of slope only.

Example 6: In the fig shown, if A \& B are at rest initially, find the velocity of $B, 10 \mathrm{~s}$ after starting from rest.

We have $\mathrm{V}_{\mathrm{A}}=2 \mathrm{~V}_{\mathrm{B}}$
For block A, the impulse equation is:
$(1000-T) t=m_{A} V_{A}=(1000 / \mathrm{g}) \mathrm{V}_{\mathrm{A}}=2000 / \mathrm{g} \cdot \mathrm{V}_{\mathrm{B}}$
For $B,(1500-2 T) t=1500 / \mathrm{g} \cdot\left(-V_{B}\right)$
Or $(2 T-1500)=1500 / \mathrm{g} . \mathrm{V}_{\mathrm{B}}$

Eqns. $2 \times(\mathrm{i})+(\mathrm{ii}) \rightarrow(2000-1500) \times 10=5500 / \mathrm{g} . \mathrm{V}_{\mathrm{B}}$
$\rightarrow \mathrm{V}_{\mathrm{B}}=8.92 \mathrm{~m} / \mathrm{s}$

Example 8: When released from rest find (a) acceleration of blocks A \& B;
(ii) Tension in the chord.

Net force $=120 \mathrm{~g}-\mu 150 \mathrm{~g}=\left(\mathrm{M}_{\mathrm{A}}+\mathrm{M}_{\mathrm{B}}\right) \mathrm{a}=(120+150) \mathrm{a}$
$\rightarrow \mathrm{a}=3.27 \mathrm{~m} / \mathrm{s}^{2}$
(ii) Consider the FBD of 150 kg block,

T- $\mu 150 \mathrm{~g}=150 \times \mathrm{a}=150 \times 3.27 \rightarrow \mathrm{~T}=785 \mathrm{~N}$.
Example 9. A cylinder is pushed up with a velocity of $0.6 \mathrm{~m} / \mathrm{s}$, and rolls down at 1.2 m / s after time T. Find T given slope is $4 / 3 ; \quad(\operatorname{Sin} \vartheta=0.8)$

Torque x time $=I\left(\omega_{2}-\omega_{1}\right)=I\left(V_{2} / r-V_{1} / r\right)$
$(m g \operatorname{Sin} \theta \cdot r) \times T=\left(m r^{2} / 2+m r^{2}\right)\left(V_{2} / r-V_{1} / r\right)=3 / 2 m r\left(V_{2}-V_{1}\right)$
$T=(3 / 2 g \operatorname{Sin} \theta)\left(V_{2}-V_{1}\right)=(3 / 2 \times 9.81 \times 0.8)(1.2-(-0.6))=0.35 \mathrm{~s}$
(Note: The time taken is independent of the mass of cylinder)

Conservation of Momentum:

Example 1. Blocks A and B of 250 N and 150 N connected by spring and at 0.3 m distance are compressed to a distance of 0.15 m and released. Find the velocity of each when again at a distance of $0.3 \mathrm{~m} . \mathrm{K}=1200 \mathrm{~N} / \mathrm{m}$

The potential energy of the spring is converted into the KE of both masses.
$1 / 2 K \delta^{2}=1 / 2 M_{1} V_{1}{ }^{2+}+1 / 2 M_{2} V_{2}{ }^{2}$
$1 / 2.1200 \cdot 0.15^{2}=1 / 2 \mathrm{~g} \cdot\left(250 \mathrm{~V}_{1}{ }^{2}+150 \mathrm{~V}_{2}{ }^{2}\right)$
$250 \mathrm{~V}_{1}{ }^{2}+150 \mathrm{~V}_{2}{ }^{2}=27 \mathrm{~g}$
Conservation of Momentum: $-\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}$

$V_{2}=250 / 150 V_{1}=5 / 3 . V_{1}$
Which gives $V_{1}=0.53 \mathrm{~m} / \mathrm{s}$; and $V_{2}=1.05 \mathrm{~m} / \mathrm{s}$ (from Eqn.1)

Example2: A 800 N man jumps of a pier horizontally with a velocity of $3 \mathrm{~m} / \mathrm{s}$ into a $3200 n$ boat. Find boat velocity if (i) boat is at rest initially (ii) boat is traveling in opposite direction with $0.9 \mathrm{~m} / \mathrm{s}$.
$m 1 . V 1=(m 1+m 2) V$
(i) $800 / \mathrm{g} \cdot 3=(800+3200) / \mathrm{g} . \mathrm{V}$

$$
\rightarrow V=0.6 \mathrm{~m} / \mathrm{s}
$$

(ii) $800 / \mathrm{g} .3+3200 / \mathrm{g} \cdot(-0.9)=(800+3200) / \mathrm{g} . \mathrm{V}$
 $\rightarrow \mathrm{V}=-0.12 \mathrm{~m} / \mathrm{s}$

In case (ii) boat continues to travel towards the pier along with the man.
Example3: A gun weighing 300 KN fires a 5 KN projectile at $300 \mathrm{~m} / \mathrm{s}$. Find the velocity of gun recoil. (iii) if recoil is overcome with 600 KN , how far and how long will the gun travel.

Cons. Of Momentum: $5 \times 300+300 x v=0->v=-5 \mathrm{~m} / \mathrm{s}$
Work Energy: $600 \times s=1 / 2(300 / \mathrm{g}) \times 5^{2} \quad->\mathrm{s}=0.837 \mathrm{~m}$ Impulse Momentum: $600 \mathrm{xt}=300 / \mathrm{g}$.(0-5) $->\mathrm{t}=0.255 \mathrm{~s}$

Example4: A block of 600 N slides on slope $4 / 3$ and strikes a spring ($k=200 \mathrm{~N} / \mathrm{m}$).
Find the max. deformation of spring and maximum velocity:
Work done $=(600 \sin \theta-\mu 600 \cos \theta) \times(6+d)=1 / 2$.K. d^{2} $(600 \times 4 / 5-0.2 \times 600 \times 3 / 5)(6+d)=1 / 2.1200 . d^{2} 7$ $\Rightarrow \quad \rightarrow d=2.37 \mathrm{~m} \quad d^{2}-0.67 d-4^{-02}=0 \rightarrow$
Velocity is maximum when acceleration $=0$ or Net force $=0$. le., $\left(600 \sin \theta-\mu 600 \cos \theta-K d_{m}\right)=0$ le., $600 \times 4 / 5-0.2 \times 600 \times 3 / 5-1200 d_{m}=0 \quad \Rightarrow d_{m}=0.34 \mathrm{~m}$ Work done $=$ PE in spring compression + KE of block.
 $(600 \sin \theta-\mu 600 \cos \theta) \times(6+0.34)=1 / 2 . K \cdot 0.34^{2}+1 / 2 .(600 / g) V^{2}$ $\rightarrow \mathrm{V}=9.07 \mathrm{~m} / \mathrm{s}$. (Maximum Velocity)

Example5: A bullet of 0.5 N at $700 \mathrm{~m} / \mathrm{s}$ strikes a block of 75 N at rest, pierces and travels at $200 \mathrm{~m} / \mathrm{s}$. Find velocity of block, distance travelled and time taken before coming to rest.

Conservation of Momentum: m

$$
\mathrm{mU}_{\mathrm{B}}+\mathrm{M} \mathrm{U}_{1}=\mathrm{m} \mathrm{~V}_{\mathrm{B}}+\mathrm{MV}
$$

$0.5 / \mathrm{g} \cdot(700-200)=75 / \mathrm{g} . \mathrm{V} 2 \Rightarrow \mathrm{v} 2=10 / 3 \mathrm{~m} / \mathrm{s}$
Work- Energy equation;

Impulse: $\mu \mathrm{F}_{\mathrm{f}} \times \mathrm{t}=\mathrm{M}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)=\mathrm{M} \mathrm{V}_{2}$
$\rightarrow 0.2 \times 75 \mathrm{t}=(75 / \mathrm{g}) \times 10 / 3 \rightarrow \mathrm{t}=1.7 \mathrm{~s}$

Example 6: A bullet of 50 gm and at $500 \mathrm{~m} / \mathrm{s}$ strikes a compound pendulum of 30 kg , and rad of gyr $=0.95 \mathrm{~m}$. Find the angular vel. of compound pendulum along with embedded bullet.
$\left.\right|_{\text {plate+ bullet }}=m r_{g}^{2}+m_{b} d^{2}$
$=30 \times 0.95^{2}+0.05 \times 1.5^{2}$
$=27.19 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
The moment of momentum of the bullet is then equal to the Angular Momentum of
 pendulum along with embedded bullet.
Hence $r \times m_{1} V=I \omega$
$1.5 \times(0.05 \times 500)=27.188 \omega \rightarrow \omega=1.38 \mathrm{rad} / \mathrm{s}$

Example7.A moves 6 m before it picks C . How far does A move before reversing its direction. $W_{A}=10 \mathrm{~N} ; W_{B}=20 \mathrm{~N}, W_{C}=15 \mathrm{~N}$.
Before impact: Work - Energy eqn: $\left(W_{B}-W_{A}\right) \times 6=1 / 2\left(M_{a}+M_{B}\right) V_{A}^{2}$
Or (20-10) $\times 6=1 / 2 .(20+10) V_{A}^{2} \Rightarrow V_{A}=2 \sqrt{g}$
Velocity after impact: $\left(M_{a}+M_{B}\right) V_{1}=\left(M_{a}+M_{B}+M_{c}\right) V_{2}$
le $\left.V_{2}=(20+10) / 20+10+15\right) \times V_{1}=30 / 45 \times 2 \sqrt{g}=4 / 3 \sqrt{ } g$
Distance moved before $(\mathrm{A}+\mathrm{C})$ comes to rest
$\left(W_{B}-W_{A}-W_{C}\right) \times s=1 / 2\left(M_{a}+M_{B}+M_{C}\right)\left(0-V_{2}{ }^{2}\right)$
ie $5 \mathrm{~s}=1 / 2 \times 45 \times(4 / 3 \sqrt{\mathrm{~g}})^{2} ; \rightarrow \mathrm{s}=8 \mathrm{~m}$.

