Dynamic Force Analysis: Analytical Method

Let us consider a slider crank mechanism, and the forces acting on a position and the corresponding torques on the crank. In this part, we will look at the following aspects.

Acceleration of piston, and the inertia force caused, the force transmitted to crank pin through connecting rod and the torque on crank (or crank shaft). - In that considering the mass of the crank shaft.
The above - considering the mass of C.R in which the mass is distributed at piston and crank ends, and correction required thereby.
Difference in analysis between horizontal and vertical motion of piston (to see how granty affects).

Dynamic Force Analysis - Analytical Method Slider Crank Mechanism

Consider the figure, Let $\mathrm{l} / \mathrm{r}=\mathrm{n}$
Also $I \operatorname{Sin} \emptyset=r \operatorname{Sin} \theta$ or $\operatorname{Sin} \emptyset=r \operatorname{Sin} \theta / I=\operatorname{Sin} \theta / n$
Hence $\operatorname{Cos} \emptyset=\left(1-\sin ^{2} \theta / n^{2}\right)^{1 / 2}$
$=1-\sin ^{2} \theta / 2 n^{2} \quad$ (from binominal expansion)
Now, displacement of piston, from inner dead centre when crank angle is θ, becomes

$$
\begin{align*}
x & =\grave{A C}-A C=1+r-(I \operatorname{Cos} \emptyset+r \operatorname{Cos} \theta) \\
& =r(1-\operatorname{Cos} \theta)+1(1-\operatorname{Cos} \emptyset) \\
& =r(1-\operatorname{Cos} \theta+n(1-\operatorname{Cos} \theta)) \tag{2}
\end{align*}
$$

However, from Eqn.(1), $1-\operatorname{Cos} \theta=\operatorname{Sin}^{2} \theta / 2 \mathrm{n}^{2}$
Substitution in Eqn(2) gives,
$x=r\left(1-\operatorname{Cos} \theta+\operatorname{Sin}^{2} \theta / 2 n\right)$
Velocity of piston $=d x / d t=(d x / d \theta) \cdot(d \theta / d t)=\omega \frac{d x}{d t}$
or $V_{p}=\dot{x}=\omega \cdot r(\operatorname{Sin} \theta+2 \operatorname{Sin} \theta \operatorname{Cos} \theta / 2 n)$
or $V_{p}=\omega \cdot \mathrm{r}(\operatorname{Sin} \theta+\operatorname{Sin} 2 \theta / 2 n)$
Acceleration of piston $=\ddot{x}=d v_{p} / d t=\left(d v_{p} / d \theta\right) \cdot(d \theta / d t)$
or $a_{p}=\dot{x}=\omega^{2} r\left(\operatorname{Cos} \theta+\frac{\cos 2 \theta}{n}\right)$
We also need to find an expression for Angular Acceleration of the connecting rod, which has an associated torque, when its mass is not negligible. (i.e. M.I. is not negligible).

We have $\operatorname{Sin} \emptyset=\operatorname{Sin} \theta / n$
or $\operatorname{Cos} \emptyset \frac{d \emptyset}{d t}=(\operatorname{Cos} \theta / n) \frac{d \theta}{d t}$
$\omega_{c}=\frac{d \emptyset}{d t}=\frac{\omega}{n} \frac{\operatorname{Cos} \theta}{\operatorname{Cos} \emptyset}$
$=\frac{\omega}{n} \frac{\operatorname{Cos} \theta}{\sqrt{\left(1-\sin ^{2} \theta / n^{2}\right)}}$
or $\omega_{c}=\omega \frac{\cos \theta}{n} \quad($ as $n \gg \sin \theta)$
Angular Acceleration of C.R, $-d \omega_{c} / d t=\left(d \omega_{c} / d \theta\right) \cdot(d \theta / d t)$
$\alpha_{c}=\frac{-\omega^{2} \sin \theta}{n}$
Consider an example, in which mass of $C R$ is neglected.
Example 1: A steam engine of 200 mm bore, stroke $=300 \mathrm{~mm}, \mathrm{CR}$ length $=$ 625 mm Mass of reciprocating parts $=15 \mathrm{~kg}$; speed $=250 \mathrm{rpn}$; differential steam pressure $=840 \mathrm{kN} / \mathrm{m}^{2}$, find (a) Crank torque (b) force on crank shaft bearings

From the figure
$F_{c}=$ Force along $C R=F_{p} / \operatorname{Cos} \emptyset$
$\mathrm{F}_{\mathrm{T}}=$ Force perpendicular to crank $=\mathrm{F}_{\mathrm{c}} \operatorname{Cos}(90-\theta-\emptyset)=\mathrm{F}_{\mathrm{c}} \operatorname{Sin}(\theta+\emptyset)$
Effective crank torque $=F_{T} \times r$
Force on crank shaft bearing $=$ force along crank
$=\mathrm{F}_{c} \operatorname{Cos}(\theta+\emptyset)$
$\omega=200 \mathrm{~N} / 60=26.18 \mathrm{r} / \mathrm{s} ; \quad \mathrm{r}=300 / 2=150 \mathrm{~mm}=0.15 \mathrm{M}$
$n=\frac{l}{r}=\frac{0.625}{0.15}=4.167$
Net force on piston $=\left(\mathrm{P}_{1}-\mathrm{P}_{2}\right) \mathrm{A}$
$=840 \times 10^{3} \times \frac{\pi}{4}(0.2)^{2}=26390 \mathrm{~N}$
Piston Effort $\left(F_{p}\right)=$ Force on piston - Inertia force due to piston near
$=\left(\mathrm{P}_{1}-\mathrm{P}_{2}\right) \mathrm{A}-m_{p} \omega^{2} \mathrm{r}(\operatorname{Cos} \theta+\operatorname{Cos} 20 / n)$
$=26390-15 \times(26.18)^{2} \times 0.15(\cos 30+\operatorname{Cos} 60 / 4.167)$
$=26870 \mathrm{~N}$
$\operatorname{Sin} \emptyset=\operatorname{Sin} \theta / n=\operatorname{Sin} 30 / 4.167 \Longrightarrow \emptyset=6.89^{\circ}$
Force along $\mathrm{CR}=F_{c}=\mathrm{F}_{\mathrm{p}} / \operatorname{Cos} \varnothing$
Crank Torque $=r=\left(F_{p} / \operatorname{Cos} \varnothing\right) \operatorname{Sin}(\theta+\emptyset) \cdot r$
$=\left(26870 / \operatorname{Cos} 6.89^{\circ}\right) \operatorname{Sin}\left(30+6.89^{\circ}\right) \times 0.15==2255 \mathrm{~N} . \mathrm{m}$
Force on Crank Shaft bearing $=F_{c} \cos (\theta+\emptyset)=\underline{20000 N}$

Dynamically Equivalent System:

When the mass of connecting rod (CR) is not negligible, it has a moment of Inertia, and an associated torque when the CR is subjected to angular acceleration. The CR also has a linear acceleration which needs a force to overcome acceleration.

To simplify analysis, we take $C R$ as a system consisting of mass m_{1} at piston end and m_{2} at crank end.

Such system wil be dynamically equivalent to $C R$ when

(1) $m_{1}+m_{2}=m$ (mass of CR)
(2) CG of both are at the same point $\left(m_{1} l_{1}=m_{2} l_{2}\right)$
(3) M.I of two masses about CG is equal to that of CR.
i.e. $m_{1} l_{1}{ }^{2}+m_{2} l_{2}{ }^{2}=m k^{2}$

In figure (a), when I_{2} is not specified, we can have an equivalent system where
$\mathrm{m}_{1}=\frac{l_{2}}{l_{1} l_{2}} \mathrm{~m} ; \quad \mathrm{m}_{2}=\frac{l_{1}}{l_{1} l_{2}} \mathrm{~m}$
However, if masses are placed at piston and crank (at lengths I_{1} and I_{3} from CG), we do not get a dynamically equivalent system,
M.I of the dyn. Non-equivalent system $=\mathrm{mk}_{1}{ }^{2}$, where $\mathrm{k}_{1}{ }^{2}=l_{1} \cdot \mathrm{l}_{3}$

Hence the correction torque $=l_{1} \alpha_{-} \mid \alpha$
$=\mathrm{m}_{\mathrm{k}_{1}^{2}} \alpha-\mathrm{m}^{2} \alpha$
i.e $T_{c}=m \alpha\left(l_{1} I_{3}-l_{1} I_{2}\right)$

The effect of the correction torque T_{c} (which is in the same direction as α_{c}) is a couple, the two forces acting at the ends of CR.

Example 2: Consider a problem of horizontal engine with data: stroke $=200 \mathrm{~mm}$; CR length $=400 \mathrm{~mm} ; C R$ mass $=100 \mathrm{~kg}$. Mass of piston $=125 \mathrm{~kg}$. Distance of CG from big end $=160 \mathrm{~mm}$. Radious of gyration of $C R=120 \mathrm{~mm}$. when the crank angle $\theta=30^{\circ}$
$R=l / f=400 / 100=4$
We have $\mathrm{m}_{1}=\mathrm{m} \times\left(\mathrm{l}_{3} / \mathrm{l}\right)=100 \times 0.16 / 0.4=40 \mathrm{~kg}$
$\mathrm{m}_{2}=\mathrm{m} \times\left(\mathrm{l}_{1} / \mathrm{l}\right)=100 \times 0.24 / 0.4=60 \mathrm{~kg}$
Total mass at piston end $=125+40=165 \mathrm{~kg}$
$\omega=2 \pi \times 750 / 60=78.54 \mathrm{r} / \mathrm{s}$
Inertia force due to total mass at piston

$$
\begin{aligned}
& \text { i.e } F_{p}=\left(m_{p}+m_{1}\right) \omega^{2} r(\cos \theta+\cos 2 \theta / n) \\
& \left.=165 \times(78.54)^{2} \times 0.1(\cos 30+\cos 60 / 4)=6144.8 \mathrm{~N} \text { (to left }\right) \\
& T_{1}=\text { Torque on crank }=\left(F_{p} / \cos \varnothing\right) \sin (\theta+\emptyset) . r \\
& =(6144.8 / \cos 7.18) \sin 37.18^{0} \times 0.1=6145 \mathrm{~N} . \mathrm{m}(\mathrm{ccw}) \\
& T_{c}=\text { Correction Torque }=m\left(k_{1}^{2}-\mathrm{k}^{2}\right) \alpha=m\left(l_{1} 1_{3}-k^{2}\right)\left(-\omega^{2} \operatorname{sing} \theta / \mathrm{n}\right) \\
& =100\left(0.24 \times 0.16-0.12^{2}\right)\left(78.54^{2} \sin 30 / 4\right) \\
& =-1851 \mathrm{~N} . \mathrm{m}(\mathrm{ccw})
\end{aligned}
$$

Note: $-\alpha$ negative value indicates direction of reducing \varnothing

- Inertia torque is counter clock wise, as it is opposite to α
- Correction torque is clockwise, as it is opposite to Inertia torque.
$T_{2}=$ Torque on crank due to correction couple
$=\left(T_{d} / \cos \varnothing\right) \times r \cos \theta=-1851 \times 0.1 \times \cos 30^{\circ} / 0.4 \times \cos 7.18^{\circ}=404 \mathrm{~N} . \mathrm{m}$
$T_{3}=$ Torque due to weight of $m_{2}=m_{2} g \times r \cos \theta=60 \times 9.81 \times 0.1 \cos 30$
$=51 \mathrm{~N} . \mathrm{m}$ (ccw)
Total Torque on crank shaft $=6145+1851+51=8047$ N.m
For a vertical Engine:
- Subtract $\left(m_{p}+m_{1}\right)$ g from inertia force F_{p}
- T_{3} instead will be $\mathrm{m}_{2} g \mathrm{r} \sin \theta$ (clockwise)

