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* Nyquist’s Stability Criterion

* Nyquist stability criterion is a frequency response technique used for
determining the stability of a closed loop system, as well as the margins of
stability.

e It uses complex mapping of the right half plane by the open loop transfer
function G(s)H(s) to check whether the roots of the characteristic equation
(C.E.), 1+ G(s)H(s) = 0, lie in the right half plane.

e Thus, we can determine whether a system is stable or not, since the roots of
C.E. lying in the right half plane (or roots having +ve real parts) make the
system unstable.

e From Bode or polar plot of G(s)H(s), we also determine Gain and Phase
margins, the margins of stability that indicate how close the system is to
unstable state.

Complex Mapping: Let us look at mapping of a closed path in a complex plane A

to complex plane B, using a function F(s) = 5/(s+2).

Consider a closed contour C in plane A. Let a point P in plane A be (1, 1j).

Then F(s) = 5/(s+2) = 5/(1+1j +2) = 5/ (3 +j) = 5(3-))/(9+1)=1.5-0.5 ]

Hence (1,1j) in A maps as (1.5 — 0.5 j) in complex plane B.

sfplcmz. A A e Phre

R oF
L/gﬁ //P("5f°‘5j)

F(s) M.af:
Plane A Plane,-t%

Each point s in plane A (called s-plane) is mapped to a point in plane B
(called the F(s) map in this case). We map each point on A, moving in CW or
CCW direction, to points in B. The path in B will also be closed.

Effect of location of poles and zeros in mapping;:

Figure shows a complex plane in which a closed path is represented. Considering
a function F(s) = (s-r), figure shows vectors from the origin to point r and to a
point s. Vector (s-r) represents the term (s-r) . It can be seen that as s traverses the
complete path, vector (s-r) rotates through one complete revolution. The angle of
the function increases by 2m. If F(s) = 1/(s-r) instead, the angle decreases by 27.
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Fig (b) shows the case when r is outside the closed path. It can be seen that as s
traverses the closed path, vector (s-r) moves to change the angle in one direction
as s traverses from S, to S,, while the angle changes by the same extent in opposite
direction as s travels from s, to s;. Thus the net change in the angle is zero.

Thus r inside the closed path increases the angle of the function F(s) = (s-r) by 27
while it makes no change if it lies outside. Also, if the term is in the denominator,
the change in the angle is -27.

(s—Z1)(s—Z2). .(s—Zm)
(s—P1)(s—-P2)..(s—Pn)’

Now for a function, F(s)

For each zero Zi, (root of numerator term), lying in the closed path s, the angle
increases by 27, and for each pole within the S contour, the angle decreases by 2.
Thus, it can be seen that F(s) map of the contour C in plane B will encircle the
origin of B, N times given by

N = Nz — Np, where

Nz = Number of zeros roots of Numerator of F(s) which are within contour
C (called the zeros), and Np are the number of roots of the Denominator ( called
poles) lying within C.

K (s+Z1)(s+22)..(s+Zm)
(s+P1)(s+P2).(s+Pn)

Example: Let F (s) =

Take a contour C taken clockwise as shown. Suppose one zero, Z1, and 3 poles,
P1, P2, P3 are within C. Then, F(s) map of C in plane B will be such that it will
encircle the origin N times, where N = Nz- Np = 1-3 = -2,

That means the F (s) map will encircle the origin 2 times CCW as shown.
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Nyquist Contour:

Let the C contour be taken as A-B-C-D-E, starting from origin of A, along
Imaginary axis and sweeping infinite radius in right half plane and back to origin
as shown. This is called the Nyquist Contour.

Now let F(s) = 1+ G(s) H(s), the char. function.
The 1+ GH map of the Nyquist contour

will encircle the origin N times, given by

N =Nz — Np, where

Nz = number of Zeros (or roots of the C.E., D t=C —§ed
1 + GH =0) lying within the Nyquist contour,
Np = number of Poles or roots of the denominator or poles of GH (or 1+GH)
lying within the'Nyquist contour.

However, Nz are the roots of the characteristic equation lying in the right
half plane (within Nyquist contour), and those that make the system unstable.
Hence Nz should be zero, for stability.

or Nz= N+ Np = 0, for stability.

or N=-Np

That is, the closed loop system will be stable if the 1 + GH map encircles
the origin Np times in the counter clockwise sense.

Next, N is the encirclements of origin of 1+ GH map.

At the origin 1+GH=0, or GH=- 1.

Hence, N, the encirclements of (0,0) of 1+GH map is the same as the
encirclements of the point (-1,0) by GH map.

Since GH is more readily available in factored form, mapping is done with
GH and N is the encirclements of (-1, 0) of GH map.

The statement for stability becomes:

wa*r
Cow TOLR

Closed loop system will be stable if GH map will encircle the point (-1,0),
Np times in the counter clockwise direction.

Again, for an open-loop stable system, all poles lie in left half plane, ie., they
donot lie not within Nyqust contour. Hence Np=0. Then the stability equation
becoms N = 0. Hence, for open-loop stable systems, the stability statement is:

For an open- loop stable system, the closed-loop system will be stable, if the net
number of encirclements of (-1,0) by the GH map of the Nyquist Contour, is zero
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We will check the stability of some systems using Nyquist Criterion.

Example 1: Check this stability of a system which has
G(s)H(s) =

52 ; : A
1 t .
(s+2)(s2+25+ S)asmg Nyquist Criterion

Draw a Nyquist Contour in the s-plane covering the whole right half plane.

Over A to B, w varies from jO to joo, ie it covers the entire +ve imaginary axis.
This map is the same as drawing the polar plot, shown as AB, in the GH-plane.

s-plane GH-plane

/"‘-. jm 4k
B 4

A /@

?_/
A & 2
4o -} (-2,0)

P1I=C ~jo £)

Over B to D, let a point be
S =R e’f where 8 varies from + 90° to 0 to — 90°

- | = 52
G(](U)H(](U) = (Rejﬁ+2)(Rzezjﬁ+2RejBS+5)

TR s Ll ld
(R3et/B) weJF

Curve B, C, D maps to the same point B at the origin in the GH plot. D to A ( -jo
to jo) is the mirror image of the polar plot.

We need to see if (-1, 0) is enclosed by the GH map.
o 52 o 52
G(S) (s+2)(s%+25+10) (53+4524+95+10)

G(jw) = =

(10%4w?2)+jw(9—w?)
Imaginary part of G(jw) is zero where w = 3, and G(jw) at w =3 is -2
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Hence GH map cuts the real axis at (-2,0). That means (-1,0) is encircled, also N =
2 clockwise.

By inspection of G(s), we can see that there are no poles in the right half plane (or
in Nyquist contour) ie.,N,, = 0

Thus N,=N+ N,=2+0=2

It means that there are 2 roots of the characteristic equation which lie in right half
plane or have roots with positive real parts which make the system unstable. The
system is unstable.

Example 2: (Type 1 system)
ot L
s(s+1)(s+4)
There is a pole at origin. To overcome this, we draw a circle of small radius €, to
exclude Pole at origin (s=0). The Nyquist contour is now A-B-C-D-E-F-A, where

E-F-A is the semicircle of radius €, drawn to exclude the pole at the origin.

For A to B part of s-contour, in the mapping of GH, w varies from 0" to o0, which
is nothing but the polar plot. It is shown as AB in GH plane. In B to C to D, R
(=o0) varies from +90, 0, -90

40

welP(welP+1)(welBs+4) weIB Oe

GH(jw) =

Thus the map of BCD of the Nyquist Contour is just a point at the origin.
Now, map of D to E is the variation of w from -0 to 0. Hence it is the mirror
image of the polar plot ( mirror image of map of A to B).

To obtain the plot of the semicircle E-F-A, we substitute s= ee/#. Thus

e 40 L .
GH(jw) = eelB(eeiF+1)(eRe/Ps+4) eelP

Hence EFA (ccw) maps to a semi-circle EFA of oo radius.
Note that due to e /7, the path E-F-A going from -90°, 0°, 90° in Nyquist contour
maps as circle of oo radius, going from 90°, 0°, -90°.

w0 e /P

The Nyquist plof is as shown below:
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Now to check where GH map cuts real axis,
40 40
GH= =

s(s+1)(s+4) = s(s2+55+4)

GH(jw) = o

—5w?+jw(4-w?)

It cuts real axis when w =2 (Im =0), and GH value at w=2 is -2.

Hence (-1, 0) is encircled twice in cw sense. Hence N =2.

N, = 0 as two roots -1, -4 are outside Nyquist contour and detour at € radius has
been taken to exclude s= 0 from the contour.

Hence N, =N+ N, =2+H0=2

Therefore the system is unstable.

In the above example, we can see the result if the semi-circle of radius € is drawn
in cw sense to include s = 0 pole (so that N, =1)

In that case, as e /P, the GH map leads to an oo semi-circle (ccw) from E to A.

B ;Lf*a@ R=eco
¥ 4 A
L} — L¥] by T
~h - kg <
Pale o¥ ongm
T ineladed in ;
Nyquist Contoar e allbatin e

Number of encirclements of (-1, 0) in GH map is 1. ie., N = 1.
N =N+N;=F1=2

Hence the same result, giving the same number of unstable poles, is obtained.
Hok sk *k
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Examples on drawing Nyquist Map to arrive at stability.
While drawing GH map, the following points may be noted:

1. For G(S)H(s) of the form K/(s+1)(s+2) or K/s(s+1), etc., the usual rules
. of ¢ and | G(jw)| may be followed for =0 or oo,

2. When (s+a) terms are in the numerator, the polar plot may become wavy
and it will be necessary to consider a good number of @ values to draw
an accurate plot.

(-0

3. When (s-1) term appears, the associated St
vector is in II quadrant, being (-1 + j). J d,)

The phase contribution is (180 - tan! @), -1 =
(~ve if in Denominator). ‘

4. If (1-s) term appead4rs, or (+1-jo) the vector T
would be II quadrant, and phase contribution is

? ) . ¢ P
—=jw
b= - tan_l @. ,‘G‘-s)

Example 1. If G(s) H(s) = K / s(s+2)(s+10), find range of K for stability.

(i) Nyquist Contour is drawn with a detour around origin by CCW semi-
circle of radius e= 0.
NYQUIST
(i)  Thus all the poles of GH, ie, 0, -2, and -10 et ae
are outside the Nyquist Contour. The above
detour with small radius is also drawn so that
the pole 1/s or pole at the origin is outside
the contour.

Hence Np = 0.

Note: Poles of GH are the roots of the denom. of GH. Poles of GH are
also poles of (1+GH)

(iii) Now we need to map each point of the Nyquist contour using the
given G(s)H(s).
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