MVSR Engineering College, Nadergul. Department of Mechanical Engineering COURSE OUTCOMES

Class: B. E. 2nd Year I Semester Name of the course: *Kinematics of Machines* Course Name (Code): *ME 251*

At the end of the course student is able to

CO no.	Course Outcomes	PO &
	Define link kinematic pair, kinematic chain and mechanism and determine degrees	PO1
M251.1	of freedom of kinematic chains using Grubler's criterion. Understand single and	PO2.PO
	double slider crank chains and their inversions. Study exact and approximate straight	12
	line motion mechanisms- Pantograph, Peaucerlier, Hart mechanisms etc. Explore the	
	steering gear mechanisms-Davis and Ackerman. Analyse Hooke's Joint Mechanism.	
M251.2	Locate instantaneous centers for the given mechanisms using Arnold Kennedy's	PO1,PO
	theorem. Draw velocity polygons and acceleration polygons for different mechanisms	2,PO3,P
	using instantaneous center method and relative methods. Determine Coriolis	O4,PO1
	Component of acceleration using graphical methods. Find velocity and acceleration	2,
	of four bar mechanism with turning parts using Analytical methods. Understand the	PSO2
	Synthesis of four bar linkage using Freudenstein's method.	
M251.3	Understand the concept of friction and apply friction concepts in screw thread	PO1,
	mechanism, pivots, collars and clutches. Understand friction axis of a link on a four	PO2,PO
	bar link mechanism and friction circle on shaft and bearing component. Study the	3,PSO2
	mechanisms of belts and ropes and calculate the maximum power transmission.	
	Understand the working principle brake and dynamometer and learn the different	
	types of brake mechanisms.	
M251.4	Appreciate the Cam terminology, types of motions for various application and draw	PO1,
	the cam profile to transmit the required motion for distinct followers under various	PO2,PS
	displacement conditions. Calculate the velocity and acceleration of the cam at any	02
	point and the corresponding maximum velocity and acceleration. Recognize the	
	types of motion, Cam and follower required for a particular engineering application.	
M251.5	Summarize the gear terminology, law of gearing and various tooth profiles.	PO1,
	Estimate the path of contact and arc of contact, contact ratio and the minimum	PO2,PO
	number of teeth on wheel and pinion to avoid interference for a spur gear.	3,PSO2
M251.6	Determine the velocity ratio between two gears and in different types of gear trains.	PO1,
	Determine torque capacities, power transmission on different gear trains. Study the	PO2,PO
	kinematics of helical gear teeth.	3,8502