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Unit - II 
Propositional Logic 
 

A sentence or well formed formula wff α is called a tautology if and only if the value of α is true (valid) 

for all its interpretations. 

A sentence or well formed formula wff α is said to be satisfiable if there exist at least one interpretation 

for which α is true. 

A sentence or well formed formula wff α is said to be unsatisfiable if the value of α is false under all 

interpretations. 

The relationship of entailment between sentences is crucial to our understanding of reasoning. A 

sentence α entails another sentence β if β is true in all worlds where α is true. Equivalent definitions 

include the validity of the sentence α → β and the unsatisfiability of the sentence α ∧ ¬β. 

Inference is the process of deriving new sentences from old ones. Sound inference algorithms derive 

only sentences that are entailed: complete algorithms derive all sentences that are entailed. 

Propositional logic is a very simple language consisting of proposition symbols and logical connectives. 

It can handle propositions that are known true, known false, or completely unknown. 

The set of possible models, given a fixed propositional vocabulary, is finite, so entailment can be 

checked by enumerating models. Efficient model-checking inference algorithms for propositional logic 

include back tracking and local searching methods and can often solve large problems very quickly. 

Inference rules are patterns of sound inference that can be used to find proofs. The resolution rule 

yields a complete inference algorithm for knowledge bases that are expressed in conjunctive normal 

form. Forward chaining and backward chaining are very natural reasoning algorithms for knowledge 

bases in Horn form. 

When use of Truth Table approach result in wastage of time exploring all possibilities, we need some 
other methods to prove validity of the formula directly. Some such methods are: 

1. Natural Deduction System 
2. Axiomatic System 
3. Semantic Tableau Method 
4. Resolution Refutation Method 

 

Propositional logic is reasonably effective for certain tasks within an agent, but does not scale to 

environments of unbounded size because it lacks the expressive power to deal concisely with time, 

space, and universal patterns of relationships among objects.  

 



 
 

The Propositional Calculus 

1. Atoms: The two distinguished atoms T and F are countably infinite set of characters that begin 

with a capital letter. Example: P, Q, R, . . . , P1, P2, ON_A_B … 

 

2. Connectives:  

∨ OR 

∧ AND 

→ IMPLIES 

¬ NOT 

 

3. Sentences also known as well-formed formulas (wffs). 

Syntax of wffs: 

1. Any atom is a wff. Example: P, R, P3 

2. If w1 and w2 are wffs, so are: 

   w1 ∨ w2   (called a disjunction of w1 and w2)  

   w1 ∧ w2   (called a conjunction of w1 and w2) 

   w1 → w2  (called an implication) 

  ¬ w1           (called a negation of w1) 

Literals: atoms and atoms with a sign in front. 

w1 → w2     w1 is antecedent and w2   is consequent 

              Examples of wffs: 

1. (P ∧ Q) →  ¬P 

2. P → ¬P 

3. P ∨ P → P 

4. (P → Q) → (¬Q → ¬P) 

5. ¬¬ P 

 
        4.  Rules of Inference: Number of ways by which additional wffs can be produced. 
                  Some common inference rules: 

1. The wff w2 can be inferred from the wffs w1 and w1 →  w2 (modus ponens) 
2. The wff w1 ∧ w2 can be inferred from the two wffs w1 and  w2 (∧ introduction) 
3. The wff w2 ∧ w1 can be inferred from w1 ∧ w2 (commutativity of ∧) 
4. The wff w1 can be inferred from w1 ∧ w2 (∧ elimination) 
5. The wff w2 ∨ w1 can be inferred from the single wff w2   (∨ introduction) 

6. The wff w1 can be inferred from ¬(¬w1)  (¬ elimination) 

 
 
 
 



 
 
 
 
       5.  Proof (also called Deduction) 

             The sequence of wffs {w1, w2, w3, . . . , wn} is called a proof of wn from  a set of wffs δ iff 
each wi in the sequence is either in δ or can be inferred from a wff (or wffs) earlier in the 
sequence by using one of the rules of inference. 

 
If there is a proof of wn from  δ, we say that wn is a theorem of the set   δ. 

 
            Example: Given a set, δ of wffs: *P, R, P → Q} 
 
A sample Proof Tree: 

 
                                              P                          P → Q                              R 
 
 
                                                          Q  
                                                           
 
 
                                                                                 Q ∧ R 
 

 
 

6.  Interpretation: An association of atoms with propositions. Atoms have values – True or False. 

w1 w2 w1 ∧ w2 w1 ∨ w2 ¬(¬w1) w1 → w2 

True True True True False True 

True False False True False False 

False True False True True True 

False False False False True True 

     The  Propositional Truth Table. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

7. Resolution in Propositional Calculus 

Several rules of inference can be combined into one rule called Resolution. 

Literal: either an atom (positive literal) or negation of atom (negative literal) 

Clause: is a set of literals. (s special kind of wff) 

               Example: {P, Q, ¬R} (equivalent to P ∨ Q ∨  ¬R) is a wff. 

Resolution on Clauses: 

    Resolution Rule for Propositional Calculus: 

    From { λ } ∪ Σ1 and {¬ λ } ∪ Σ2 where Σ1 and Σ2 are sets of literals and λ is an atom. 

    We can infer, Σ1 ∪ Σ2 called the resolvent of the clauses, and the atom λ is the atom resolved  

                                                                                                                                                                  upon. 

The process is called resolution. 

 

Examples: 

1. Resolving R ∨ P and ¬P ∨ Q yields R ∨ Q 

The two clauses being resolved can be rewritten as the implications: ¬R → P and P → Q. 

A rule of inference called chaining applied to these implications yields: ¬R → Q. 

Which is equivalent to the resolvent R ∨ Q. Thus, chaining is a special case of resolution. 

2. Resolving R and ¬R ∨ P yields P. 

Since the second clause is equivalent to R → P. Thus, modus ponens is also a special case of 

resolution. 

3. Resolving R ∨ Q ∨ R ∨ S with ¬P ∨ Q ∨ W on P yields Q ∨ R ∨ S ∨ W. Note that only one 

instance of Q appears in the resolvent. 

4. Resolving P ∨ Q ∨ ¬R with P ∨ W ∨ ¬Q ∨ R on Q yields P ∨ ¬R ∨ R ∨ W. 

                                                              Resolving them on R yields P ∨ Q ∨ ¬Q ∨ W. 

In this case, since both ¬R ∨ R and Q ∨ ¬Q have value True, the value of each of these 

resolvents is True. In this example, we must resolve either on Q or on R – not on both 

simultaneously, that is, P ∨ W is not a resolvent of two clauses! 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

8. Converting Arbitrary wffs to Conjunction of Clauses 

Any wff in the propositional calculus can be converted to an equivalent conjunction of clauses.  

A wff written as a conjunction of clauses is said to be in conjunctive normal form (CNF).  

A wff written as a disjunction of conjunction of literals is said to be in disjunctive normal form 

(DNF).  

Example: 

1. wff: ¬(P → Q) ∨ (R → P) 

Step 1: Eliminate implication signs by using the equivalent form using ∨: 

               ¬ (¬P ∨ Q) ∨ (R ∨ P) 

Step 2: Reduce the scopes of ¬ signs by using De Morgan’s laws and by eliminating double ¬   

              signs: 

              (P ∧ ¬Q) ∨ (¬R ∨ P) 

Step 3: Convert to CNF by using the associative and distributive laws. First, 

              (P ∧ ¬R ∨ P) ∧ (¬Q ∨ ¬R ∨ P)    then, 

              (P ∧ ¬R ) ∧ (¬Q ∨ ¬R ∨ P) 

A conjunction of clauses (that is, the CNF form of a wff) is usually expressed as a set of 

clauses (with conjunction of the clauses implied); thus, 

              { (P ∧ ¬R ), (¬Q ∨ ¬R ∨ P)}      

 

9. Resolution Refutations 

A resolution refutation for proving an arbitrary wff w, from a set of wffs δ. 

Proceed as follows: 

1. Convert wffs in δ to clause from – a (conjunctive) set of clauses. 

2. Convert the negation of the wff to be proved w, to clause form 

3. Combine the clauses resulting from steps 1 and 2 into a single set T. 

4. Iteratively apply resolution to the clauses in T and add the results to T either until there are 

no more resolvents that can be added or until the empty clause is produced. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Example: Robot lifting a block 

Consider a robot that is able to lift a block, if that block is liftable, and if the robot’s battery 

power source is adequate. If both these conditions are satisfied, then when the robot tries to lift 

a block it is holding, its arm moves. We represent the above conditions by binary-valued 

features: 

x1 (BAT_OK) 

x2 (LIFTABLE) 

x3 (MOVES) 

Given a set of wffs δ: 
1. BAT_OK 
2. ¬MOVES 
3. BAT_OK ∧ LIFTABLE → MOVES 
The clause form of the 3rd wff is  
4. ¬BAT_OK ∨ ¬LIFTABLE ∨ MOVES 
The negation of the wff to be proved yields another clause: 

5. LIFTABLE 

               Now we perform resolutions to produce the following sequence of clauses. 
6. ¬BAT_OK  ∨ MOVES   (5 with 4) 
7. ¬BAT_OK   (6, 2) 
8. NIL  (6, 1) 

 

           This refutation is also shown as a refutation tree below: 

 
 

       LIFTABLE            ¬BAT_OK ∨ ¬LIFTABLE ∨ MOVES 
 
 
                                                                                       

¬BAT_OK ∨ MOVES 
                                                                                          ¬MOVES 
 
                                                     ¬BAT_OK   
                                                                                                                BAT_OK 
 
                                                                                    Nil 
 

 

 

 



Boolean Function 
 

Definition: 
Let B = {0, 1}. Then Bn = {(x1, x2, . . . , xn) | xi ∈ to B for 1≤  i ≤ n} is the set of all possible n-tuples of 0s 
and 1s. The variable x is called a Boolean Variable if it assumes values only from B, that is, it its’ only 
possible values are 0 and 1. A function from Bn to B is called Boolean Function of Degree n. 
 
Example: 
A Boolean Function of degree two is a function from a set with four elements, namely, pairs of elements 
from B = {0, 1} to B, a set of two elements. Hence, there are 16 different Boolean Functions of degree 
two, example, F(xy) = F10 = xy’. 
 

x y F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 

1 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 

0 1 1 1 0 0 1 1 0 1 1 0 0 1 1 1 0 0 

0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 
 

Number of Boolean Functions of degree n 

Degree, n Number of Boolean Functions, N = 2
m

 where m = 2
n 

1 4 

2 16 

3 256 

4 65, 536 

5 4, 294, 967, 296 

6 18, 446, 744, 073, 709, 551, 616 

 
Boolean Algebra 
Boolean algebra provides the operations and the rules for working with the set {0, 1}. 
Operations include complementation      (¬ ), sum (∨), and product (∧).  
Examples: 1.0 + (0 + 1)’ = 0; (T∧F) ∨ ¬ (T∨F) = F;  
                    (T∧T)  ∨ ¬ F = T; (1.1) + 0’ =1 
Boolean Identities 

Identity Name 

x’’ = x Law of double compliments 

x + x =x 
x.x = x 

Idempotent 

x +0 = x 
x.1 = x 

Identity 

x + 1 = 1 
x.0 = 0 

Domination 

x + y = y + x 
xy = yx 

Commutative 

x + (y + z) = (x + y) + z Associative 

X(y + z) = xy + xz 
x +yz = (x +y)(y + z) 

Distributive 
 

(xy)’ = x’ + y’ 
(x + y)’ = x’y’ 

 

DeMorgan’s 

x + xy = x 
x(x +y) = x 

Absorption 

x + x’ = 1 Unit property 

x.x’ = 0 Zero property 
 

 



 

Quine – Mc Clusky Method 

To simplify a sum-of-products expression 

1. Express each minterm in n variables by a bit string of length n with a 1 in the ith position of xi 

occurs and a 0 in this position if xi’ occurs. 

2. Group the bit strings according to the number of 1s in them. 

3. Determine all products in n-1 variables that can be formed by taking the Boolean sum of 

minterms in the expression. Minterms that can be combined are represented by bit strings that 

differ in exactly one position. Represent these products in n-1 variables with strings that have a 

1 in the ith position if xi occurs in the product, a 0 in this position if xi’ occurs, and a dash in this 

position if there is no literal involving xi in the product. 

4. Determine all products in n-2 variables that can be formed by taking the Boolean sum of the 

products in n-1 variables found in the previous step. Products in n-1 variables that can be 

combined are represented by bit strings that have a dash in the same position and differ in 

exactly one position. 

5. Continue combining Boolean products in fewer variables as long as possible. 

6. Find all the Boolean products that arose that were not used for to form a Boolean product in 

one fewer literal. 

7. Find the smallest set of these Boolean products such that sum of these products represent the 

Boolean functions. This is done by forming a table showing which minterms are covered by 

which products. Every minterm must be covered by at least one product. The first step in using 

this table is to find all essential prime implicants. Each essential prime implicant must be 

included because is the only prime implicant that covers one of the minterms. Once we have 

found essential prime implicants, we can simplify the table by eliminating the column for 

minterms covered by this prime implicant. Furthermore, we can eliminate any prime implicants 

that cover a subset of minterms covered by another prime implicant. Moreover, we can 

eliminate from the table the column for a minterm if there is another minterm that is covered 

by a subset of all the prime implicants that cover this minterm. This process of identifying 

essential prime implicants that must be included, followed by eliminating redundant prime 

implicants and identifying minterms that can be ignored, is iterated until the table does not 

change. At this point we use a backtracking procedure to find the optimal solution which we 

compare to the best solution found so far at each step. 

 

 

 

 



 
Given: 

Term Bit String Number of 1s 

wxyz’ 1110 3 

wx’yz 1011 3 

w’xyz 0111 3 

wx'yz’ 1010 2 

w'xy’z 0101 2 

w'x’yz 0011 2 

w'x’y’z 0001 1 

 

Use the Quine- Mc Clusky method to simplify the sum-of-products expansion:  
wxyz’ + wx’yz + w’xyz + wx'yz’ + w'xy’z + w'x’yz + w'x’y’z 

S. No Term Bit String Step 1 Step 2 

Term String Term String 

1 wxyz’ 1110 (1, 4)  wyz’ 1-10 (3, 5, 6, 7)  w’z 0--1 

2 wx’yz 1011 (2, 4)  wx’y 101-   

3 w’xyz 0111 (2, 6)  x'yz -011   

4 wx'yz’ 1010 (3, 5)  w'xz 01-1   

5 w'xy’z 0101 (3, 6)  w'yz 0-11   

6 w'x’yz 0011 (5, 7)  w'y’z 0-01   

7 w'x’y’z 0001 (6, 7)  w'x’z 00-1   

 

 wyz' wx'yz w'xyz wx'yz’ w'xy’z’ w'x’yz w'x’y’z 

w'z   x  x x x 

wyz' x   x    

wx'y  x  x    

x'yz  x    x  

 

Answer: w’z + wyz’ + wx’y   or   w’z + wyz’ + x’yz 

 
 
 
 
 
 
 
 
 
 



 

 

Predicate Calculus (First Order Calculus) 

A language that refers to Objects in the world and Propositions about the world. 

Components: 
1. Object Constants: strings of alphanumeric characters. Example: Aw3. 
2. Function Constants: strings of alphanumeric characters beginning always with a lower case 

letter and superscripted by their arity. Example: distanceBetween2, times2. 
3. Relation Constants: strings of alphanumeric characters beginning with a capital letter and 

superscripted by their arity. Example: B153, clear1. 
4. Connectives and delimiters: ∧, ∨, ¬, → 

                                                    (, ), [, ],  , 
 
Terms: 

1. An object constant is a term. 
2. A function constant of arity n, followed by n terms in parentheses and separated by commas, is 

a term. This type of term is called a functional expression. Example: fatherOf(john, Bill), times(4, 
plus(3,6)). 

 
Wffs: 

1. Atoms: a relation constant of arity n followed by n terms in parantheses and separated by 
commas is an atom (atomic formula). A relation constant of arity 0 omits the parantheses. An 
atom is a wff. Example: P(A, B, C, D), Q. 

2. Propositional wffs: any expression formed out of predicate-calculus wffs in the same way that 
the propositional calculus forms wffs out of other wffs is a wff, called a propositional wff. 
Example:[Greaterthan(7, 2) ∧ Lessthan(15, 41)] ∨ P. 

 
Semantics: 
Worlds 

1. The world can have infinite number of objects (individuals) in it. 
2. Functions on individuals: we can have an infinite number of functions of all arities that map m 

tuples of individuals into individuals. Example: A function that maps a person into his/her father. 
3. Relations over individuals: the individuals can participate in an arbitrary number of relations. 

These will each have arities. (A relation of arity 1 is called property). 
 
 
 
 
 
 
 
 
 
 



 
 
Interpretations: 

Interpretation of an expression is an assignment that maps object constants into objects in the 
world, n-ary function into n-ary functions, and n-ary relation constants into n-ary relations. 
These assignments are called denotations of their corresponding predicate-calculus expressions. 
The set of objects to which object constant assignments are made is called domain of the 
interpretation. 
Example: Blocks World 

 
 
 
 
 
Floor 
 

Individuals: A, B, C, and Floor 
Relations: On, Clear 
 
Representation in predicate calculus: A, B, C, Fl 
Binary Constant: On 
Unary Relation Constant: Clear 

 
Determination of some predicate calculus wffs: 
On (A, B) is False because <A, B> is not in the relation On. 
Clear (B) is True because <B> is in the relation Clear. 

 
Models and Related Notations 

1. An interpretation satisfies a wff if the wff has the value True under that interpretation. 
2. An interpretation that satisfies a wff is a model of that wff. 
3. Any wff that has the value True under all interpretations is valid. 
4. Any wff that does not have a model is inconsistent or unsatisfiable. 
5. If a wff w has value True under all of those interpretations for which each of the wffs in a set Δ 

has value True, then Δ logically entails w. 
6. Two wffs are equivalent if and only if their truth values are identical under all interpretations. 

 
 
Quantification 
Quantification over variable symbols gives the predicate calculus the expressive power. Quantification 
over relation and function symbols are not allowed in First-Order Predicate Calculus. Higher-Order 
Predicate Calculii allow quantification over relation and function symbols. 

1. Variable symbols: strings P1, f(x, Bob, C17) 
2. ∀ Universal Quantifier 
        ∃ Existential Quantifier 
3. (∀ξ)w and (∃ξ)w are wffs. 

(Qξ)w: closed wff (closed sentence) Q: either ∀ or ∃  
Wff w is said to be within the scope of quantification. Variable symbol ξ is quantified over. 

 
 
 
 
 
 

C 

A 

B 



 
Rules of Inference 

1. Universal Instantiation (UI) 
From (∀ξ) w(ξ), infer w(α), where w(ξ) is any wff with variables ξ, α is any constant symbol, and 
w(α)  is w(ξ) with α substituted for ξ throughout w. 
Example: from (∀x) P(x, f(x), B) infer P(A, f(A), B). 

2. Existential Generalization (EG) 
From w(α), infer (∃ξ) w(ξ), where w(α) is a wff containing a constant symbol α, and w(ξ) is a form 
with ξ replacing every occurrence of α throughout w. 
Example: From (∀x) Q(A, g(A), x) infer (∃y) (∀x) Q(y, g(y), z) 

3. Include propositional-calculus rules of inference 
1. modem ponens 
2. ∧ introduction and elimination 
3. ∨ introduction 
4. ¬ elimination 
5. Resolution 

 
Predicate Calculus as a language for representing knowledge. 
Examples: 

1.  All packages in room 27 are smaller than any of the packages in room 28. 
(∀𝑥, 𝑦){[package(x) ∧ Package(y) ∧ Inroom(x, 27) ∧ Inroom(y, 28)] → Smaller(x, y)] 

 
2. Every package in room 27 is smaller than one of the packages in room 29. 
       (∃y)(∀𝑥){[package(x) ∧ Package(y) ∧ Inroom(x, 27) ∧ Inroom(y, 29)] → Smaller(x, y)] 
       (∀𝑥)(∃y){[package(x) ∧ Package(y) ∧ Inroom(x, 27) ∧ Inroom(y, 29)] → Smaller(x, y)] 

 
Three Blocks-World Knowledge Representation and Reasoning 
A, B, C, Floor are Object Constants. On is a Binary Relation Constant, and Clear is a Unary Relation Constant. 

 
 
 
 
 
 
 
Floor 
 
 
 
 

Predicate Calculus 
Object Relation 
Constants 

World Objects  
 
 
 
On(C, Fl) ∧ ¬On(A, B) is True. 
Because both C, Fl) and ¬On(A, B) are 
True. 
 

1. ¬Clear(C) ∧ ¬Clear(A) → Clear(B) 
2. On(B, A) ∧ On(A, C) → On(C, Fl) 

 
A  
B  
C  
Fl 
On 
Clear 

 
A 
B 
C 
Floor 
On = {< >, < >} 
Clear = {(B)} 

Figure 1. A Configuration 
of Blocks World 

Table 1. Mapping between Predicate Calculus 
and the World. 

Figure 2. A set of Formulas 
embodying knowledge 
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Prolog 
Prolog is an acronym for Programming in Logic by Alain Colmeraur, 1970 (Univ. of France). David H. D. Warren 
(Scotland) wrote first compiler. It is a declarative language and is an approximate implementation of logic 
programming language on a sequential machine. Logic program is a set of clauses. Prolog views set of clauses as a 
sequence of Horn Clauses. A Horn Clause is a clause with at most one positive literal. PARALOG , concurrent Prolog, 
GHC are based on parallel execution. 
 

In Prolog, the Horn clauses function as statements of the language and are written in the following formats:  
 

Rules: λh :- λb1, . . . , λbn 

                (which is a specia way of writing the implication λb1 ∧ . . . ∧ λbn → λh ), where each λi is a positive literal. The  
           literal λh is called the head of the clause, and the ordered list of literals, λb1, . . . , λbn is called the body. 
 

Facts: λh :- 
 

Goals:- λb1, . . . , λbn 

 
The literals in goals and in the bodies of rules are ordered lists, and this order plays an important role in execution 
of a Prolog program. 
 

Prolog program is expressed in terms of program clauses (rules and facts) and the goals are solved using these 
clauses. An interpreter is a program that can take another program as input. An interpreter is known as meta 
interpreter for a language if it is written in the same language. A meta interpreter for Prolog may be used for 
generation of Proof Tree. Prolog interpreter uses the resolution refutation method. If it succeeds in refuting 
(contradiction), the goal is said to be a logical consequence of the Prolog program. Both recursive and iterative 
programming can be attempted in Prolog. Prolog uses the following control strategies: 

1. Forward movement 
2. Unification (Matching) 
3. Backtracking – Deep Backtracking, and Shallow Backtracking 

Recursive Data Types are implemented in Prolog. Linked Lists and Binary Trees can be implemented. 
 

The inference over Prolog  clauses consists of attempting to ‘prove’ a goal clause and is performed by executing a 
Prolog program. Such a Proof is achieved by resolution-like operations performed on Prolog facts, goals, and rules. 
Each resolution is performed between a goal and either a fact or a rule: 

1. A goal can resolve with a fact by unifying the fact with one of the literals in the goal. We call this 
literal the one resolved upon. The resolvent is a new goal consisting of a list of all of the substitution 
instances of the other literals in the original goal written in the same order as in original goal. The 
substitution instances are obtained by applying the mgu of the unification to all of these other 
literals.    

2. A goal can resolve with rule by unifying the head of the rule with one of the literals in the goal. The 
resolvent is a new goal formed by appending the list of substitution instances of all of the literals in 
the body of the rule to the front of the list of substitution instances of all of the other (non-resolved-
upon) literals in the goal.   

 
 
 
 
 
 
 
 



 
 
Prolog handles two major issues: 

1. Choosing the first sub goal from the resolvent. (Uses depth-first strategy while satisfying sub goals in the 
resolvent. Order of rules and goals are significant and lead to different results with different orders) 

2. Choosing the first clause that matches when the clauses are sequentially searched from top to bottom in 
the program.  

 
Issues in Prolog 

1. Redundancy – generation of same solution many times 
2. Termination – fails to find the solution using depth first strategy with infinite branch that does not 

terminate computation. 
   
Syntax 

1. Rules and facts are terminated by a full stop (.) 
2. Prolog goal (query) is written after the symbol ?- and terminated by full stop (.). A goal may be simple or 

conjunction of sub goals. 
3. Variable names must start with uppercase alphabets and may be constituted by letters, numerals, and the 

underscore symbol ( _ ). 
4. Constants may be in the form of integers (such as 4), symbols (such as mary), and strings (‘This is a 

string’). Strings are always enclosed within single quotes. 
5. Function and Predicate names must start with lower case alphabets and are formed using lowercase 

letters, numerals, and the underscore symbol ( _ ). 
6. All the rules and facts of the same predicate name should appear together in the program. 

 
 

A Prolog program for proving that the arm moves, given 
that the block is liftable and the battery is charged: 
 

1. :- MOVES 
2. BAT_OK :- 
3. LIFTABLE :- 
4. MOVES :- BAT-OK, LIFTABLE 

 

AND-OR PROOF TREE 
 
 
                 Goal1 
 
 
 
Rule4 
 
 
 
Fact2                                                                                 Fact3                                                                                              
 
 
 
 

Assignment: 
1. Study Reference Manual and prepare a summary note not exceeding two pages bringing out salient 

features offered in SWI Prolog version 7.4, January 2017, University of Amsterdam.  

2. Write a Prolog program and print the solution using the notes provided on Four disc Towers-of-Hanoi on 

the reverse of this page. 

 

 

MOVES 

MOVES 

BAT_OK LIFTABLE 

BAT_OK 

 

LIFTABLE 

 



 

Simple Prolog Programs 
cs.toranto.edu 

 

 
1. Here are some simple clauses. 

 

likes(mary,food). 

likes(mary,wine). 

likes(john,wine). 

likes(john,mary). 

 

The following queries yield the specified answers. 

 

 | ?- likes(mary,food).  

 yes. 

 | ?- likes(john,wine).  

 yes. 

 | ?- likes(john,food).  

 no. 

 

How do you add the following facts? 

 

1. John likes anything that Mary likes  

2. John likes anyone who likes wine  

3. John likes anyone who likes themselves  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
2. Slightly more complicated family tree. 

 

 

                              James I 

                                 | 

                                 | 

                +----------------+-----------------+ 

                |                                  | 

             Charles I                          Elizabeth 

                |                                  | 

                |                                  | 

     +----------+------------+                     | 

     |          |            |                     | 

 Catherine   Charles II   James II               Sophia 

                                                   | 

                                                   | 

                                                   | 

                                                George I 

 

Here are the resultant clauses: 

------------------------------- 

  male(james1). 

  male(charles1). 

  male(charles2). 

  male(james2). 

  male(george1). 

 

  female(catherine). 

  female(elizabeth). 

  female(sophia). 

 

  parent(charles1, james1). 

  parent(elizabeth, james1). 

  parent(charles2, charles1). 

  parent(catherine, charles1). 

  parent(james2, charles1). 

  parent(sophia, elizabeth). 

  parent(george1, sophia). 

 

 

Here is how you would formulate the following queries: 

 

     Was George I the parent of Charles I?  

              Query: parent(charles1, george1).  

     Who was Charles I's parent? 

              Query: parent(charles1,X).  

     Who were the children of Charles I? 

              Query: parent(X,charles1).  

Now try expressing the following rules: 

     M is the mother of X if she is a parent of X and is female  

     F is the father of X if he is a parent of X and is male  

     X is a sibling of Y if they both have the same parent.  

Furthermore add rules defining: 

     "sister", "brother",  

     "aunt", "uncle",  

     "grandparent", "cousin"  



 

 
3. Recursion: Towers of Hanoi 

 

 

The 3-disk setup is like this: 

 

 

           |        |         | 

          xxx       |         | 

         xxxxx      |         | 

        xxxxxxx     |         | 

     _________________________________ 

      

Here's a sample: 

 

% move(N,X,Y,Z) - move N disks from peg X to peg Y, with peg Z being the 

%                 auxilliary peg 

% 

% Strategy: 

% Base Case: One disc - To transfer a stack consisting of 1 disc from  

%    peg X to peg Y, simply move that disc from X to Y  

% Recursive Case: To transfer n discs from X to Y, do the following:  

         Transfer the first n-1 discs to some other peg X  

         Move the last disc on X to Y  

         Transfer the n-1 discs from X to peg Y 

 

     move(1,X,Y,_) :-   

         write('Move top disk from '),  

         write(X),  

         write(' to '),  

         write(Y),  

         nl.  

     move(N,X,Y,Z) :-  

         N>1,  

         M is N-1,  

         move(M,X,Z,Y),  

         move(1,X,Y,_),  

         move(M,Z,Y,X).   

 

- note the use of "anonymous" variables _ 

 

Here is what happens when Prolog solves the case N=3.  

 

     ?-  move(3,left,right,center).  

     Move top disk from left to right  

     Move top disk from left to center  

     Move top disk from right to center  

     Move top disk from left to right  

     Move top disk from center to left  

     Move top disk from center to right  

     Move top disk from left to right  

       

     yes 

 



 

4. An example using lists: 

 

(a) length of a list 

 

size([],0). 

size([H|T],N) :- size(T,N1), N is N1+1. 

%  or size([_|T],N) :- size(T,N1), N is N1+1. 

 

| ?- size([1,2,3,4],N). 

 

N = 4 

 

yes 

| ?- size([bill,ted,ming,pascal,nat,ron],N). 

 

N = 6 

 

yes 

| ?- size([a, [b, c, d], e, [f | g], h], N). 

 

N = 5 

 

yes 

 

 

(b) summing elements of a list of numbers 

 

sumlist([],0). 

ssumlist([H|T],N) :- sumlist(T,N1), N is N1+H. 

 

(c) list membership 

 

member(X,[X|_]). 

member(X,[_|T]) :- member(X,T). 

 

(d) reversing a list 

 

reverse(List, Reversed) :- 

          reverse(List, [], Reversed). 

 

reverse([], Reversed, Reversed). 

reverse([Head|Tail], SoFar, Reversed) :- 

          reverse(Tail, [Head|SoFar], Reversed). 

 

| ?- myreverse([a,b,c,d],X). 

 

X = [d,c,b,a];     <- note semicolon (more solns?) 

 

no 

 

| ?- myreverse([a,b,c,d],[d,b,c,a]). 

 

no 

| ?- myreverse([a,b,c,d],[d,c,b,a]). 

 

yes 

 

- note difference between reverse/2 and reverse/3 

- reverse/3 probably should be called reverseHelper or something else for clarity 

 



 
 

Knowledge Based Systems 
 
Three major theoretical properties of logical reasoning systems are: 

1. Soundness: for an inferred conclusion is true. 
2. Completeness: for an inference will eventually produce a true conclusion. 
3. Tractability: for an inference be feasible. 

 
If wff w is not logically entailed by a Δ (set of wffs), the resolution refutation procedure might never 
terminate. Thus resolution cannot be used as a full decision procedure. 
 
It can be shown that there is no other method that will always tell us that a wff w does not logically 
follow from a set of wffs Δ when it doesn’t. Because of this fact, we say that the predicate calculus is 
semi-decidable. Semi-decidability makes the predicate calculus inherently intractable. Even on problems 
for which resolution refutation terminates, the procedure is NP-hard. Although many reasoning 
problems can be formulated as problems of resolution refutation, the method is intractable for very 
large problems. 
 
With relaxation on three properties above, a less expressive language than the predicate calculus is 
sufficient for many applications. Reasoning using Horn clauses is more efficient. Horn clauses form the 
basis of the programming language Prolog. 
 
Horn clause:   A clause having at most one positive literal. 
 

1. If there is at least one negative literal and a single positive literal, the Horn clause can be written 
as an implication whose antecedent is a conjunction of positive literals and whose consequent is 
a single positive literal. Such a clause is called a rule.  

2. There may be no negative literal in the clause, in which case, we write it as an implication whose 
antecedent is empty and whose consequent is a single positive literal. Such a clause is called a 
fact. 

3. There may be no positive literal in the clause, in which case, we write it as an implication whose 
consequent is empty and whose antecedent is a list of positive literals. Such a clause is called a 
goal. 

 
 
 
 
 
 
 
 
 
 
 



Semantic Nets 

The main idea behind semantic nets is that the meaning of a concept comes from the ways in which it is 
connected to other concepts. In a semantic net, information is represented as a set of nodes connected 
to each other by a set of labeled arcs, which represent relationships among the nodes. 
 

 
 
 
 
                                                                                                   isa          
                                                                                                                 has-part 
 
 
                                                                                                  instance 
                                                      uniform-code                                  team             
      
 
 
Figure 1. An example Semantic Net. An additional relation has-part(Roger, Nose) is derived using  
                 Inheritance.                                                                                       

 

 
 
 
 
 
                                                                                                   instance                                  instance          
                                                              agent                                           object         
 
 
                                                                                                  beneficiary 
                                                                                                    
      
 
 
Figure 2. An example Semantic Net representing a Sentence. 

 
 
 
 
 
 
 
 
 
 
 

Mammal 

Blue Manchester Roger 

Nose Person 

Book Give 

Mary 

BK23 EV7 John 



Frames 
A frame is a collection of attributes (usually called slots) and associated values (and possibly constraints 
on values) that describe some entity in the world. Sometimes it represents the entity from a particular 
point of view. A single frame is rarely useful.  The value of attribute of one frame may be another frame.  
 

 
Person 
   Isa:                                  Mammal 
   Cardinality:                   6, 000, 000, 000 
   *handed:                       Right 
 
Adult-Male 
   Isa:                                  Person 
   Cardinality:                   2, 000, 000, 000 
   *handed:                       5-10 
 
ML-Baseball-Player 
   Isa:                                  Adult-Male 
   Cardinality:                   624 
   *height:                         6-1 
   *bats:                             equal to handed 
 
Fielder 
   Isa:                                  ML-Baseball-Player 
   Cardinality:                   376 
   *batting-average:        .262 
 
Pee-Wee-Reese 
   Instance:                       Fielder 
   Height:                          5-10 
   Bats:                              Right 
 
ML-Baseball-Team 
   Isa:                                 Team 
   Cardinality:                   26 
   *team-size:                   24 
 
Brooklyn-Dodgers   
   Instance:                       ML-Baseball-Team 
   Team-size:                    24 
   Manager:                      Leo-Durocher 
 
 
 
A Simplified Frame Structure    

 
 
 



Rule Based Expert Systems 

AI programs that achieve expert level competence in solving problems by bringing to bear a body of 
knowledge are called knowledge-based systems or expert systems. 

 
                    Expert                                                                                                             User 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                      Knowledge Engineer 
 

 
Figure 1. Basic Structure of an Expert System 

Rule-based expert systems are often based on reasoning with propositional logic Horn clauses 
(perhaps with some kind of additional mechanism for dealing with uncertainty). The knowledge base 
consists of rules gathered from experts. 
 

In many applications, the system has access only to uncertain rules, and the user may also not be 
able to answer questions with certainty. 

Example: MYCIN system [Shortliffe 1976] – bacterial infections diagnosis 
Rule 300 
If:  
1.  The infection which requires therapy is meningitis, and  
2. The patient does have evidence of serious skins or soft tissue infection, and  
3. Organisms were not seen on the stain of the culture, and  
4. The type of the infection is bacterial 
Then: 
       There is evidence that the organism (other than those seen on cultures or smears) which might 
be  
       causing the infection is staphylococcus-coag-pos (0.75); streptococcus-group-a (0.5). 
 

The numbers 0.75 and 0.5 in MYCIN above represent the certainty or strength of a rule. They are 
used by the system in computing the certainty of conclusions. 
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Shell: The E.S shell simplifies the process of creating a knowledge base. It is the shell that 

actually processes the information entered by a user relates it to the concepts contained in the 

knowledge base and provides an assessment or solution for a particular problem. Thus E.S 

shell provides a layer between the user interface and the computer O.S to manage the input 

and output of the data. It also manipulates the information provided by the user in conjunction 

with the knowledge base to arrive at a particular conclusion. 

 

CLIPS – a tool for building Expert System http://clipsrules.sourceforge.net/ 

About CLIPS 

Developed at NASA's Johnson Space Center from 1985 to 1996, the 'C' Language Integrated 

Production System (CLIPS) is a rule-based programming language useful for creating expert 

systems and other programs where a heuristic solution is easier to implement and maintain than 

an algorithmic solution. Written in C for portability, CLIPS can be installed and used on a wide 

variety of platforms. Since 1996, CLIPS has been available as public domain software. 

Notable CLIPS applications 

 An Intelligent Training System for Space Shuttle Flight Controllers, IAAI-89 

 Applications of Artificial Intelligence To Space Shuttle Mission Control, IAAI-89 

 HUB SIAASHING: A Knowledge-Based System for Severe, Temporary Airline Schedule Reduction, IAAI-92 

 PI-in-a-Box: A Knowledge-based System for Space Science Experimentation, IAAI-93 

 The DRAIR Advisor: A Knowledge-Based System for Materiel Deficiency Analysis, IAAI-93 

 The Multimission VICAR Planner: Image Processing for Scientific Data, IAAI-95 

 IMPACT: Development and Deployment Experience of Network Event Correlation Applications, IAAI-95 

 The NASA Personnel Security Processing Expert System, IAAI-96 

 Expert System Technology for Nondestructive Waste Assay, IAAI-98 

 Hybrid knowledge based system for automatic classification of B-scan images from ultrasonic rail inspection, 

IAAI-98 

 An Expert System for Recognition of Facial Actions and their Intensity, IAAI-00 

 Loads-n-Limits and Release-n-Sequence: The "Brains" behind WEPS, IAAI-05 

 Development of a Hybrid Knowledge-Based System for Multiobjective Optimization of Power Distribution 

System Operations, IAAI-05 

 

 
 

http://www.aaai.org/Papers/IAAI/1989/IAAI89-021.pdf
http://www.aaai.org/Papers/IAAI/1989/IAAI89-007.pdf
http://www.aaai.org/Papers/IAAI/1992/IAAI92-018.pdf
http://www.aaai.org/Papers/IAAI/1993/IAAI93-004.pdf
http://www.aaai.org/Papers/IAAI/1993/IAAI93-015.pdf
http://www.aaai.org/Papers/IAAI/1995/IAAI95-004.pdf
http://www.aaai.org/Papers/IAAI/1995/IAAI95-007.pdf
https://www.aaai.org/Papers/IAAI/1996/IAAI96-281.pdf
https://www.aaai.org/Papers/IAAI/1998/IAAI98-014.pdf
https://www.aaai.org/Papers/IAAI/1998/IAAI98-016.pdf
https://www.aaai.org/Papers/IAAI/2000/IAAI00-014.pdf
http://www.aaai.org/Papers/AAAI/2005/IAAI05-002.pdf
https://www.aaai.org/Papers/IAAI/2005/IAAI05-014.pdf
https://www.aaai.org/Papers/IAAI/2005/IAAI05-014.pdf


Facts and Rules of Knowledge-Base (01 February 2017) 

Experiment 1: Development of Rule-Base 
1.  It is possible to generate Rules using a Set of Facts from a given Domain and that these Rules are capable 

of validating the Queries on the Set of Facts.  

2. Are these Rules capable of validating Queries that are not based on the Set of Facts (above) but belong to 

the same Domain? Explore. 

Domain: Eating 

Facts: 

Rough Form Proper Form 
Eating good food keeps health Ramu eats good food 

Ramu is healthy 
Siva eats good food 
Siva is healthy 
Rajani eats good food 
Rajani  is healthy 
John eats good food 
John is healthy 

Eating when hungry makes life better Ramu eats when hungry 
Rajani eats when hungry 

Eating food makes us survive Siva is alive 
Ramu is alive 
John is alive 

Eating food makes us grow Ramu grows 
Rajani grows 

Eating food more than required leads to obesity Jhonny eats more food 
Prabhu eats more food 
Jhonny is obese 
Prabhu is obese 

Obesity  leads to bad health Prabhu is not healthy 
Jhonny is not healthy 

Gulping food without chewing leads to bad health Srinu gulps food to eat 
Srinu does not chew food to eat 
Ramu chews food to eat 
Siva chews food to eat 
Jhonny gulps food to eat 
Prabhu gulps food to eat 

Eating natural food keeps body and mind healthy Ramu eats natural food 
Siva eats natural food 
Rajani eats natural food 

Not eating any food for days is dangerous to life Jhanavi is not eating food for some days 
Raghava is not eating food for some days 

Eating junk materials is dangerous to life Madhav eats junk material 
Raghava eats junk material 

Junk materials are not food  Junk materials are not food 

Wheat is good food Wheat is food 
Rice is food 
Cereals are food 

Tobacco is junk material Tobacco is junk material 
Pan Masala is junk material 
Cocaine is junk material 

Vegetables are good food Vegetables are good food 

Fruits are good food Fruits are good food 

Apple is a fruit Apple is a fruit 
Banana is a fruit 
Orange is a fruit 

Beans is a vegetable Beans is a vegetable 
Brinjal is a vegetable 
Tomato is a vegetable 

 



 

Person Eats Food   Health 

What When How Quantity  Alive Leads to 
Death 

 G B H NH C G N R MR Healthy Not 
Healthy 

Dangerous 

Ramu Apple  H  C   R  T   

Siva Beans  H  C   R  T   

Rajani Wheat   H  C   R  T   

John Oranges  H  C   R  T   

Jhonny Rice   NH      MR  T  

Prabhu  Tobacco  NH C     MR  T  

Srinu  H   N     T 

Jhanhavi  H   N     T 

Raghava  Pan 
Masala 

H  C    MR  T  

Madhav  Cocaine   G  R   T  
G: Good Food   B: Bad Food  H: Hungry  NH: Not Hungry  C: Chews  G: Gulps  N: No Food for Many Days  R: Required Quantity  
MR: More than Required Quantity  T: True 

Table 1. Summary of Facts for development of Rules 
 
Rules: (Using Set Theory and Logic – Propositional/Predicate) 
Rules: (Reasoning with insufficient information i.e., with less than the required set of attributes and their 
values requires Rough Sets and Rough Logic) 
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