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Introduction – Growth Rates of Various Functions and History of AI 
Problem Solving – State Space Search: Exhaustive and Heuristic Search 
Puzzles and Games Playing 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Growth Rates of Various Functions 

S. 
No 

Class Terminology Example Tractable  
P Problems/ 
Intractable  
NP Complete 
Problems 

1 1 Constant growth Finding midpoint of an array  
 
 
Tractable, P 
Problems 

2 log(n) Logarithmic growth Binary Search 

3 n Linear growth Linear Search 

4 n.log(n)   Merge Sort 

5 n2 Quadratic growth Insertion Sort 

6 n3 Cubic growth Seeing if an element appears 3 
times in a list 

7 nc Polynomial growth The two above 

8 2n Exponential growth Towers of Hanoi  
Intractable, 
NP Complete 
Problems 

9 nn-2  No. of spanning trees generated 
from a graph G of n vertices 

10 n! Factorial growth Traveling Salesman Problem 

 
11 

2m   
m = 2n 

 
 

 
Boolean Function of degree n 

 
NP-Hard 

 
An algorithm with growth rate equal to or larger than exponential growth is called ‘Intractable’, 
because, for even moderate input size, its run time is impractically long. 
 
Problems from Graph Theory 

S. 
No 

Polynomial-Bounded Algorithms Run-Time Bounds 
n: no. of vertices 
e: no. of edges 

 Non-Polynomial Bounded 
Algorithms 

1 Connectedness and components n2 or e Chromatic Number 

2 Spanning Tree e Smallest Dominant Set 

3 Minimal Spanning Tree n2 Maximal Clique 

4 Fundamental Circuit-Set nv  2 ≤ v ≤ 3 Hamiltonian Circuit 

5 Cut-Vertices and Blocks n2 or e Directed Hamiltonian Circuit 

6 Bridges n2 or e Traveling Salesman Problem 

7 Shortest Path between two 
vertices 

n2  Minimal Feedback Edge-Set 

8 Transitive Closure nα  2 ≤ α ≤ 3 Minimal Feedback Vertex-Set 

9 Strong Connectedness and 
Fragments 

n2 or e Steiner Tree 
 

10 Planarity e Isomorphism 

11 Topological Sorting e  

12 Maximal matching in a bipartite 
graph 

n5/2  

13 Minimal Cut nβ  2 ≤ β ≤ 3  

14 Minimal Edge Cover n3  

t ≤ αnk  or t ≤ βeq  



Unit – I  

Introduction 
 

1. Some Definitions of Artificial Intelligence 
Artificial Intelligence is the study of how to make computers to do things which, at the moment, 
people do better (Rich and Knight). 
 
Agent is anything that can be viewed as perceiving its environment through sensors and acting 
upon that environment through effectors. Performance measure gives the criteria that 
determine how successful an agent is. 
 
Ideal Rational Agent: For each possible percept sequence, an ideal rational agent should do 
whatever action is expected to maximize its performance measure, on the basis of the evidence 
provided by the percept sequence (everything that the agent has perceived so far) and whatever 
built-in knowledge the agent has. 
 
Cognitive Science: Interdisciplinary field which brings together computer models from AI and 
experimental techniques from Psychology that attempts to construct precise and testable 
theories of the workings of the human mind. 
 
Turing Test: (by Alan Turing, 1950) Ability to achieve human-level performance in all cognitive 
tasks, sufficient to fool an interrogator. 
 

Systems that 

Think like Humans 
Cognitive Science  
Hugeland, 1985: General Problem Solver. 
Bellman, 1978: The automation of activities 
that we associate with human thinking, 
activities such as decision-making, problem 
solving, learning …  
 

Think Rationally 
Logic 
Charnaik and McDermott, 1985: The study of 
mental faculties through the use of 
computational models. 
Winston, 1992: The study of the computations 
that make it possible to perceive, reason, and 
act.  

Act like Humans 
Turing Test 
Kurzweil, 1990: The art of creating machines 
that perform functions that require 
intelligence when performed by people. 
Rich and Knight, 1991: The study of how to 
make computers do things which, at the 
moment, people do better. 

Act Rationally 
Agent 
Schalkoff, 1990: A field of study that seeks to 
explain and emulate intelligent behavior in 
terms of computational processes. 
Luger and Stubblefield, 1993: The branch of 
computer science that is concerned with 
automation  of intelligent behavior. 

Ref: Rich & Knight. 
 
 
 
 
 



 
1. A Historical Trace of Artificial Intelligence 

 
1943-1956: The gestation of Artificial Intelligence 

1943 Warren McCulloch and Walter Pitts First AI Work 

1949 Donald Hebb Updating Rule 

1950 Claude Shannon Chess Programs 

1951 Marvin Minsky and Dean Edmonds First Neural Network Computer 

1953 Alan Turing Chess Programs 

 McCarthy Named the field as Artificial Intelligence (AI) 

 Allen Newell and Herbert Simon  

 
1952-1975: Early Enthusiasm and Great Expectations 

1952 Arthur Samuel Checkers 

1958 MIT: Hohn McCarthy LISP: Programs with Common Sense 

1958 Marvin Minsky Microworlds: Block World 

1959 IBM: Nathaniel Rochester  

1959 Herbert Gelernter Geometric Theorem Prover 

1960 Widrow and Hoff Enhanced Hebb’s Learning Methods 

1962 Widrow Adalines (Networks) 

1962 Frank Rosenblatt Perceptrons 

1963 James Slagle SAINT Program: Closed Form Integration 

1963 Winograd and Cowan Lange number of elements represent and individual 
concept 

1967 Daniel Bobrow STUDENT Program: Algebra Story Problem 

1968 Tom Evan ANALOGY Program: Geometric Analogy Problems 

1970 Patrick Winston Learning Theory 

1971 David Huffman Vision Project 

1972 Terry Winograd Natural Language Understanding 

1974 Scott Fahlman Planner 

1975 David Waltz Constraint Propagation 

 
1966-1974: A Dose of Reality 

 
1958 
1957 
 
1973 

 
Friedberg et. al 
National Research 
Council 
Lighthill 

AI attempted Intractable Problems: 
Machine Evolution (Genetic Algorithms) 
English Translation of Russian Scientific Papers in the wake of the 
Sputnik Launch 
Lighthill Report: Basis for decision to end British Government 
support to AI research as AI could not tackle ‘Combinatorial 
Explosion’. 

1969 Minsky and Papert Book on ‘Perceptrons’: Proved that although Perceptrons could 
be shown to learn anything they were capable of representing, 
they could represent very little. 

 
1965 

 
Weizenbaum 

Programs contained little or no knowledge of their subject 
matter. 
ELIZA Program 



 
 
1969-1979: Knowledge-Based Systems 

 
 
 
1969 

 
 
 
Buchanan et al., 

Weak Methods: 
General Purpose Mechanisms trying to string together 
elementary reasoning steps to find complete solutions. 
DENDRAL Program (First Knowledge Intensive System) 

 
 
 
1979 
1977 
1981 
1983 

 
 
 
Duda et al.,  
Schank and Abelson 
Schank and Riesbeck 
Dyer 

Expert Systems: 
Feigenbaum, Buchanan and Edward Shortlife: MYCIN 
Medical Diagnosis for blood infections using 450 rules. 
PROSPECTOR: Exploratory Drilling at a geological site. 
Understanding Natural Languages. 
Understanding Natural Languages. 
Understanding Natural Languages. 

 
1975 

 
Minsky 

Frames: 
Structured approach collecting together facts about 
particular object and event types, and arranging the types 
into a large taxonomic hierarchy analogous to a biological 
taxanomy 

 
1980-1988: AI becomes an Industry 

1982 Mc Dermott The first successful Commercial Expert System R1, began 
operation at Digital Equipment Corporation 
A few million $ in 1980 to 2 billion $ by 1988 

 
1986 – Present: The return of Neural Networks 

1969 Bryson and Ho Back-Propagation Learning 

1982 Hopfield Storage and Optimization properties of Networks 

1986 Rumelhart and McClelland Parallel and Distributed Processing of Back-Propagation 

 
1987- Present: Recent Events 

  Hidden Markov Models 

1977 
1987 

Austin Tate 
David Chapman 

Simple Framework for Planning Programs 

1988 Judea Pearl Probabilistic Reasoning in Intelligent Systems: Acceptance 
of Probability and Decision Theory to AI. 

 
 
1982 
1986 
 

 
 
Judea Pearl 
Horvitz et al., 

Belief Networks: Reasoning about the combination of 
uncertain evidence. 
Normative Expert Systems: One that act rationally 
according to the laws of Decision Theory and do not try to 
imitate human experts.  

 
 
 
 
 
 



2. Problem Solving: Solution Trace in State-Space and in State-Transition Diagram 
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Figure 1. Problem Solving using State Space Approach: 853 Water Vessels Problem – Exhaustive Search & Heuristic Search© 

V. Ashwini Kumar       18 March 2014 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Problem Solving using State Transition Approach: 853 Water Vessels Problem – Exhaustive Search & Heuristic Search© 

V. Ashwini Kumar       18 March 2014 
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Figure 3. Illustration of Recursion represented through State Transition Diagram for Towers of Hanoi
©

. 

                     Final States:            3 Pole – 3 Disc Case,         3 Pole – 2 Disc Case  and         3 Pole – 1 Disc Case 
Heuristic for Solution Path: Follow Recursion as shown above along the right most edge a-b-c of the Triangle. 

V. Ashwini Kumar, Recursion Heuristic Search and Exhaustive Search in Towers of Hanoi 
 

 

 
 
 
 
 

 
 
 
 

 

 

Figure 4. Heuristic Search: Recursive Sequence of Transitions for 2, 3 and 4 disc cases of Towers of Hanoi
©

. 
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2 - - 2 1 - - 1 2 - - 2 

A B C A B C A B C A B C 

       q0 a       q1        q3 c        q6 

1                              1 

2   2       1   1       2   2 

3 - - 3 - 1 3 2 1 3 2 - - 2 3 1 2 3 1 - 3 - - 3 

A B C A B C A B C A B C A B C A B C A B C A B C 

1                                   

2   2                   1   1  

3   3   3   3  1   1 1   1 2   2   2  

4 - - 4 1  4 1 2 4 - 2 4 3 2 4 3 2 4 3 - 4 3 - - 3 4 

A B C A B C A B C A B C A B C A B C A B C A B C A B C 

 

Number of Transitions required to reach final state is given by: Hn = 2 Hn-1 + 1 = 2
n
 – 1. 

Where n is the number of discs. If n = 64, Hn = 18, 446, 744, 073, 709, 551, 615 



 
 

Heuristic Search                                                                                                     Eight Slide Puzzle Problem                                                                         
 
Heuristic: A technique that improves the average-case performance on a problem-solving task, but does not 
necessarily improve the worst-case performance. 
 
Heuristic Function: f(n): A function that help decide which node is the best one to expand next. This is a measure of the 
goodness of a state. When written as sum of g(n), the depth factor and h(n), the heuristic evaluation of a node help to 
explore promising paths to the goal, in this case, it is the number of tiles out of place (compared to goal state). 
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Final 
State 
 
                      Goal 

2 8 3 

1 6 4 

7  5 

2 8 3 

1  4 
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2 8 3 
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 7 5 

2  3 

1 8 4 
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2 3  

1 8 4 

7 6 5 

2 8 3 

 1 4 

7 6 5 

 8 3 

2 1 4 

7 6 5 

2 8 3 

7 1 4 

 6 5 

2 3  

1 8 4 

7 6 5 

 2 3 

1 8 4 

7 6 5 

1 2 3 

 8 4 

7 6 5 

1 2 3 

8  4 

7 6 5 

1 2 3 

7 8 4 

 6 5 

2 8 3 

1 6 4 

7 5  

 
1. f(n) = g(n) + h(n) = 0 + 5 = 5 

 
2. f(n) = g(n) + h(n) = 1 + 6 = 7 
3. f(n) = g(n) + h(n) = 1 + 3 = 4 
4. f(n) = g(n) + h(n) = 1 + 6 = 7 

 
5. f(n) = g(n) + h(n) = 2 + 4 = 6 
6. f(n) = g(n) + h(n) = 2 + 4 = 6 
7. f(n) = g(n) + h(n) = 2 + 5 = 7 

 

8. f(n) = g(n) + h(n) = 3 + 4 = 7 
9. f(n) = g(n) + h(n) = 3 + 5 = 8 
10. f(n) = g(n) + h(n) = 3 + 3 = 6 
11. f(n) = g(n) + h(n) = 3 + 5 = 8 

 
12. f(n) = g(n) + h(n) = 4 + 2 = 6 

 

 
13. f(n) = g(n) + h(n) = 5 + 0 = 5 
14. f(n) = g(n) + h(n) = 5 + 3 = 8 

 
 

Figure  5. Heuristic Function evaluation to decide upon expansion of next nodes in State-Space of 8-Slide   
                 Puzzle Problem. 
 

Algorithm: Heuristic for 8-Slide Puzzle Problem 
 

1. Test h(n) = 0? If true go to 5, else go to 2. 
2. Expand Nodes (States) in the next level of the Tree (breadth-wise). 
3. Find f(n) for the above Nodes and compare to find the Node with minimum value. 
4. Expand Node/s with minimum value. 

Repeat 1 to 4 until Final (goal) State with f(n) is Minimum and h(n) = 0. 
5. End. 



Heuristics in Puzzles and Games 

9 Side-Flipping Tiles Problem – SFT9 

 
Each tile the board is numbered from 1 to 9. Tiles can be flipped side-ways on to the next adjacent tile. 
Any one tile can be flipped at a time. Two or more tiles at a location is called compound 
tile. A compound tile cannot be flipped. Face value of a compound tile is the value of the 
tile at the top. Value of the board is the sum of the values of tiles seen on the board. In 
this case, it is 1 + 2 + . . . + 9 = 45. 
 
For example, after the tiles with values 1, 3, 5, 7 and 9 are flipped side-ways, we get a state  
as shown in the figure. The value of the board is 1 + 3 + 5 + 9 = 18. 
 
 
 
 
After the tiles 1, 2, 3, 8 and 3 are flipped side-ways, we get a state as shown in the figure. 
The value of the board is 1 + 2 + 3 + 7 = 13. 
 
How do we get to a minimum value of the board with minimum number of flips? 
Will this heuristic work for board with random sequence of numbers (1-9) as its initial 
state? 
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1 2  

7  3 

9 2 5 

8 1 7 

4 6 3 

 
 
 

 
 
 
 
 
 

 

 
Triangular lamina in blue colour (hatched lines) has two sides with two different  
numbers. Say, 1 and 2 respectively. Similarly, eight triangles on  
the background square have different unique non-repeated numbers. 
Triangular lamina in blue colour (hatched lines)  can be made to flip on any of its side  
to occupy next adjacent triangular area in the square on each flip.  
The value of the triangular area in the square gets updated when the lamina 
in blue colour leaves the space it occupied earlier.  
How to get to a final state from a given state? State the update rule. 
Is there a heuristic to improve search? State. 
 



 
Analyze Tic-Tac-Toe Game and Present the Strategies and the corresponding Heuristics to win the Game 

 
Types of Behavior (Strategy and Heuristic) of Players: 

1. Play uniformly randomly (Unresponsive to opponent’s actions) – Generally losing the game 
2. Play to block in every move – Generally Drawing the game 
3. Play to win by not blocking, but blocking only in a losing situation – Some-times winning the 

game, when the opponent’s behavior is of type 1 or 3.  
Assumption: the players do not change the strategies during the game.  
 
Types of games: 

1-1 2-1 3-1 

1-2 2-2 3-2 

1-3 2-3 3-3 

Notation: 11 means first player (1) playing the first (1) move. 24 means second player making the fourth 
move. 
 
Type of Game: 3-3 (First move of the first player cannot be the cell 5, this belongs to 
Game Type 2) 
The second player will win even if the first player marks in cell/position 3 or 9 
instead of in cell/position 2. 
 
 
 
 
 
The second player will win even if the first player marks in cell/position 8 or 9 
instead of in cell/position 3. 
 
 
 
 
 
 
The second player will win even if the first player marks in cell/position 9 instead of 
in cell/position 8. 
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Game: Get-Away© 
 
Experiment Number: 1 
Is it possible to improve our ability to win as we play more games? If yes, how? 

 
Two Players play this game. Each Player has ten cards. Each card has a unique number on one of its side. The 
number is chosen from a range of numbers 0 to 9. The first Player chooses a card as per his/her wish and puts this 
card on the table such that the number on it is not disclosed. Next, the second Player picks a card of his/her choice 
and puts the card in the same way on the table. Now, the two Players disclose the numbers on their cards. They 
calculate the absolute difference of these two numbers. If the absolute difference is less than or equal to 2, then 
the first Player scores a point and pick next card of his choice from the cards he/she has and continue to play. Else, 
there is no score for any player but the game moves on to the next Player to pick a card of his/her choice and 
continue. A Match comprises of two players placing their cards in sequence and declaring the match point. A set of 
Matches makes a Game. Both players maintain their cumulative match points by summing the points they 
acquired throughout the Game. The Player who scores more cumulative match points of the two wins the Game. 

 
Player A:         Name:                                                                             Roll No.: 

Number 
on the 
Card 

0 1 2 3 4 5 6 7 8 9 

Chosen 
Card No. 

          

 
Player B:         Name:                                                                             Roll No.: 

Number 
on the 
Card 

0 1 2 3 4 5 6 7 8 9 

Chosen 
Card No. 

          

 
Game No.:                                                                                                                                            Threshold Number, n: 2 

Match 
No. 

First Player Second Player Absolute 
Difference 

of Numbers, 
D = |a - b| 

D ≤ n 
D ≤ 2 

Player 
Name 
that 
scored 
the 
Point 

Match Point 
for Player A 

Match Point 
for Player B 

Name Number 
 a 

Name Number 
b 

T F 

1           
2           
3           
4           
5           
6           
7           
8           
9           

10           
                                                                                                                    Total Match Points   

Types of Behavior (Strategy and Heuristic) of Players: 
1. Both Players play uniformly randomly (Unresponsive to opponent’s actions) – Experiment 1 
2. Player A always plays a number that is very close or the same as  the last number disclosed by Player B as long as it is possible – Expt 2 

Assumption: the players do not change the strategies during the game.  



Game: Get-Away© 
 
Experiment Number: 1.1 
Is it possible to improve our ability to win as we play more games? If yes, how? 

 
Two Players play this game. Each Player has Three cards. Each card has a unique number on one of its side. The 
number is chosen from a set of numbers {1,2,3}. The first Player chooses a card as per his/her wish and puts this 
card on the table such that the number on it is not disclosed. Next, the second Player picks a card of his/her choice 
and puts the card in the same way on the table. Now, the two Players disclose the numbers on their cards. They 
calculate the absolute difference of these two numbers. If the absolute difference is equal to 0, then the first 
Player scores a point and pick next card of his choice from the cards he/she has and continue to play. Else, there is 
no score for any player but the game moves on to the next Player to pick a card of his/her choice and continue. A 
Match comprises of two players placing their cards in sequence and declaring the match point. A set of Matches 
makes a Game. Both players maintain their cumulative match points by summing the points they acquired 
throughout the Game. The Player who scores more cumulative match points of the two wins the Game. 

 

 
 
 
 

 
 
 
 
 
 

 
 
 
 

 
 

 
 
 
 

 
 
 
 
Figure 1. Part of the Game Tree for the Problem Get-Away with Numbers from Set = {1,2,3} and  
                Threshold Number n equal to Zero.      
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Game: Get-Away© 
 
Experiment Number: 1.1 
Is it possible to improve our ability to win as we play more games? If yes, how? 

 
Two Players play this game. Each Player has Three cards. Each card has a unique number on one of its side. The 
number is chosen from a set of numbers {1,2,3}. The first Player chooses a card as per his/her wish and puts this 
card on the table such that the number on it is not disclosed. Next, the second Player picks a card of his/her choice 
and puts the card in the same way on the table. Now, the two Players disclose the numbers on their cards. They 
calculate the absolute difference of these two numbers. If the absolute difference is equal to 0, then the first 
Player scores a point and pick next card of his choice from the cards he/she has and continue to play. Else, there is 
no score for any player but the game moves on to the next Player to pick a card of his/her choice and continue. A 
Match comprises of two players placing their cards in sequence and declaring the match point. A set of Matches 
makes a Game. Both players maintain their cumulative match points by summing the points they acquired 
throughout the Game. The Player who scores more cumulative match points of the two wins the Game. 

 

 
 
 
 

 
 
 
 
 
 

 
 
 
 

 
 

 
 
 
 

 
 
 
 
Figure 2. Part of the Game Tree for the Problem Get-Away with Numbers from Set = {1,2,3} and   
                 Threshold Number n equal to Zero.      
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Game: Get-Away© 
 
Experiment Number: 1.1 
Is it possible to improve our ability to win as we play more games? If yes, how? 

 
Two Players play this game. Each Player has Three cards. Each card has a unique number on one of its side. The 
number is chosen from a set of numbers {1,2,3}. The first Player chooses a card as per his/her wish and puts this 
card on the table such that the number on it is not disclosed. Next, the second Player picks a card of his/her choice 
and puts the card in the same way on the table. Now, the two Players disclose the numbers on their cards. They 
calculate the absolute difference of these two numbers. If the absolute difference is equal to 0, then the first 
Player scores a point and pick next card of his choice from the cards he/she has and continue to play. Else, there is 
no score for any player but the game moves on to the next Player to pick a card of his/her choice and continue. A 
Match comprises of two players placing their cards in sequence and declaring the match point. A set of Matches 
makes a Game. Both players maintain their cumulative match points by summing the points they acquired 
throughout the Game. The Player who scores more cumulative match points of the two wins the Game. 

 

 
 
 
 

 
 
 
 
 
 

 
 
 
 

 
 

 
 
 
 

 
 
 
 
Figure 3. Part of the Game Tree for the Problem Get-Away with Numbers from Set = {1,2,3} and   
                 Threshold Number n equal to Zero.      
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Game Tree [see Complete Game Tree document for this problem given separately] 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Complete Game Tree for the Problem Get-Away© with Numbers from Set = {1, 2, 3} and  
                 Threshold Number n equal to Zero when Player A plays first. A wins in {(A3, B0), (A3, B0),        
                 (A1, B0), (A1, B0)}. B wins in {(B1, A0), (B1, A0)} and the Game ends in a draw 6 times.                     
                 For details of the nodes, see Figure 4. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
Game: Lake Diggers© – Team A and Team B 
 
An arbitrary shaped Area comprising of squares of unit size has to be dug into a lake.  There are n 
number of diggers to do this job in a given number of units of time t. Where n  is less than the number of 
squares in the arbitrary shaped area. Both teams A and B dig separate lakes of identical shapes in plan 
view to start with. Each digger can dig one cubic unit of volume in a unit time. Each digger can climb a 
step of only one unit and no more while doing the job. Which-ever team digs a more voluminous lake 
wins. 
What is the maximum volume of the lake that can be dug? And what is the corresponding maximum 
depth (z) of the lake and its coordinates (x, y).  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                               
 
 
 
Figure 6. Example Lake with its plan view of arbitrary shaped area in red line  and its corresponding  
                 sectional elevation in blue line. 
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Search for Optimal Value (Maxima) in Discrete and Continuous Domains 

Problem: A tray can be made from a square lamina by removing square pieces of same size at 
all corners of the lamina and then folding the sides upright. If the size of the square lamina is 10 
units x 10 units, and the corner square pieces can take any size from 1 unit x 1 unit onwards. 
Find the maximum volume of the tray, and the dimensions of the tray with maximum volume. 
Also if the corner squares can assume continuous values from 0 x 0 onwards, Find the ideal 
maximum volume of the tray possible and the corresponding dimensions of the tray.  
 

Solution: Let A = 10 be the side of the square lamina. Let c be the side of the square being 
removed at all corners of the square lamina. Then the sides of the bottom of the tray will be a = 
A – 2c = 10 – 2(c = 1, 2, …), while the height of the tray is c. 
 

1.  For various discrete values of c, discrete volume V is calculated: 
 

c a a2 V = a2c 

0 10 100 0 

1 8 64 64 

2 6 36 72 

3 4 16 48 

4 2 4 16 

5 0 0 0 

 
2.    General equation of volume in continuous domain is V = (A – 2c)2c = A2c – 4Ac2 + 4c3. 

The maxima is found by differentiating the above equation w.r.t c and equating it to zero. 
dV/dc = A2 – 8Ac + 12c2 = 0. 
Solving, we get c = A/6 
Substituting this in V, we get V = [16/(36x6)]A3 
For A = 10, V = 74.074 
 

Algorithmic Time-Complexity Analysis 
For various sizes of given square lamina 

Solution Method 1 (Discrete) Solution Method 2 (Continuous) 

For a square with side n, Total computational 
units involved = (n/2 volume computations – 
1) + ((n/2-1) -1) volume comparisons for 
finding maximum value. T(n) = (n/2 – 1) + [(n/2 
– 1) -1]. 
 
 
 

For a square with side n, Total computational 
units involved = T(n) = 1 (constant). 
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Plot Showing Continuous and Discrete Values of Volume for Maxima. 

 


