

Unit-I

Introduction – Growth Rates of Various Functions and History of AI
Problem Solving – State Space Search: Exhaustive and Heuristic Search
Puzzles and Games Playing

Growth Rates of Various Functions

S.
No

Class Terminology Example Tractable
P Problems/
Intractable
NP Complete
Problems

1 1 Constant growth Finding midpoint of an array

Tractable, P
Problems

2 log(n) Logarithmic growth Binary Search

3 n Linear growth Linear Search

4 n.log(n) Merge Sort

5 n2 Quadratic growth Insertion Sort

6 n3 Cubic growth Seeing if an element appears 3
times in a list

7 nc Polynomial growth The two above

8 2n Exponential growth Towers of Hanoi
Intractable,
NP Complete
Problems

9 nn-2 No. of spanning trees generated
from a graph G of n vertices

10 n! Factorial growth Traveling Salesman Problem

11

2m
m = 2n

Boolean Function of degree n

NP-Hard

An algorithm with growth rate equal to or larger than exponential growth is called ‘Intractable’,
because, for even moderate input size, its run time is impractically long.

Problems from Graph Theory

S.
No

Polynomial-Bounded Algorithms Run-Time Bounds
n: no. of vertices
e: no. of edges

 Non-Polynomial Bounded
Algorithms

1 Connectedness and components n2 or e Chromatic Number

2 Spanning Tree e Smallest Dominant Set

3 Minimal Spanning Tree n2 Maximal Clique

4 Fundamental Circuit-Set nv 2 ≤ v ≤ 3 Hamiltonian Circuit

5 Cut-Vertices and Blocks n2 or e Directed Hamiltonian Circuit

6 Bridges n2 or e Traveling Salesman Problem

7 Shortest Path between two
vertices

n2 Minimal Feedback Edge-Set

8 Transitive Closure nα 2 ≤ α ≤ 3 Minimal Feedback Vertex-Set

9 Strong Connectedness and
Fragments

n2 or e Steiner Tree

10 Planarity e Isomorphism

11 Topological Sorting e

12 Maximal matching in a bipartite
graph

n5/2

13 Minimal Cut nβ 2 ≤ β ≤ 3

14 Minimal Edge Cover n3

t ≤ αnk or t ≤ βeq

Unit – I

Introduction

1. Some Definitions of Artificial Intelligence
Artificial Intelligence is the study of how to make computers to do things which, at the moment,
people do better (Rich and Knight).

Agent is anything that can be viewed as perceiving its environment through sensors and acting
upon that environment through effectors. Performance measure gives the criteria that
determine how successful an agent is.

Ideal Rational Agent: For each possible percept sequence, an ideal rational agent should do
whatever action is expected to maximize its performance measure, on the basis of the evidence
provided by the percept sequence (everything that the agent has perceived so far) and whatever
built-in knowledge the agent has.

Cognitive Science: Interdisciplinary field which brings together computer models from AI and
experimental techniques from Psychology that attempts to construct precise and testable
theories of the workings of the human mind.

Turing Test: (by Alan Turing, 1950) Ability to achieve human-level performance in all cognitive
tasks, sufficient to fool an interrogator.

Systems that

Think like Humans
Cognitive Science
Hugeland, 1985: General Problem Solver.
Bellman, 1978: The automation of activities
that we associate with human thinking,
activities such as decision-making, problem
solving, learning …

Think Rationally
Logic
Charnaik and McDermott, 1985: The study of
mental faculties through the use of
computational models.
Winston, 1992: The study of the computations
that make it possible to perceive, reason, and
act.

Act like Humans
Turing Test
Kurzweil, 1990: The art of creating machines
that perform functions that require
intelligence when performed by people.
Rich and Knight, 1991: The study of how to
make computers do things which, at the
moment, people do better.

Act Rationally
Agent
Schalkoff, 1990: A field of study that seeks to
explain and emulate intelligent behavior in
terms of computational processes.
Luger and Stubblefield, 1993: The branch of
computer science that is concerned with
automation of intelligent behavior.

Ref: Rich & Knight.

1. A Historical Trace of Artificial Intelligence

1943-1956: The gestation of Artificial Intelligence

1943 Warren McCulloch and Walter Pitts First AI Work

1949 Donald Hebb Updating Rule

1950 Claude Shannon Chess Programs

1951 Marvin Minsky and Dean Edmonds First Neural Network Computer

1953 Alan Turing Chess Programs

 McCarthy Named the field as Artificial Intelligence (AI)

 Allen Newell and Herbert Simon

1952-1975: Early Enthusiasm and Great Expectations

1952 Arthur Samuel Checkers

1958 MIT: Hohn McCarthy LISP: Programs with Common Sense

1958 Marvin Minsky Microworlds: Block World

1959 IBM: Nathaniel Rochester

1959 Herbert Gelernter Geometric Theorem Prover

1960 Widrow and Hoff Enhanced Hebb’s Learning Methods

1962 Widrow Adalines (Networks)

1962 Frank Rosenblatt Perceptrons

1963 James Slagle SAINT Program: Closed Form Integration

1963 Winograd and Cowan Lange number of elements represent and individual
concept

1967 Daniel Bobrow STUDENT Program: Algebra Story Problem

1968 Tom Evan ANALOGY Program: Geometric Analogy Problems

1970 Patrick Winston Learning Theory

1971 David Huffman Vision Project

1972 Terry Winograd Natural Language Understanding

1974 Scott Fahlman Planner

1975 David Waltz Constraint Propagation

1966-1974: A Dose of Reality

1958
1957

1973

Friedberg et. al
National Research
Council
Lighthill

AI attempted Intractable Problems:
Machine Evolution (Genetic Algorithms)
English Translation of Russian Scientific Papers in the wake of the
Sputnik Launch
Lighthill Report: Basis for decision to end British Government
support to AI research as AI could not tackle ‘Combinatorial
Explosion’.

1969 Minsky and Papert Book on ‘Perceptrons’: Proved that although Perceptrons could
be shown to learn anything they were capable of representing,
they could represent very little.

1965

Weizenbaum

Programs contained little or no knowledge of their subject
matter.
ELIZA Program

1969-1979: Knowledge-Based Systems

1969

Buchanan et al.,

Weak Methods:
General Purpose Mechanisms trying to string together
elementary reasoning steps to find complete solutions.
DENDRAL Program (First Knowledge Intensive System)

1979
1977
1981
1983

Duda et al.,
Schank and Abelson
Schank and Riesbeck
Dyer

Expert Systems:
Feigenbaum, Buchanan and Edward Shortlife: MYCIN
Medical Diagnosis for blood infections using 450 rules.
PROSPECTOR: Exploratory Drilling at a geological site.
Understanding Natural Languages.
Understanding Natural Languages.
Understanding Natural Languages.

1975

Minsky

Frames:
Structured approach collecting together facts about
particular object and event types, and arranging the types
into a large taxonomic hierarchy analogous to a biological
taxanomy

1980-1988: AI becomes an Industry

1982 Mc Dermott The first successful Commercial Expert System R1, began
operation at Digital Equipment Corporation
A few million $ in 1980 to 2 billion $ by 1988

1986 – Present: The return of Neural Networks

1969 Bryson and Ho Back-Propagation Learning

1982 Hopfield Storage and Optimization properties of Networks

1986 Rumelhart and McClelland Parallel and Distributed Processing of Back-Propagation

1987- Present: Recent Events

 Hidden Markov Models

1977
1987

Austin Tate
David Chapman

Simple Framework for Planning Programs

1988 Judea Pearl Probabilistic Reasoning in Intelligent Systems: Acceptance
of Probability and Decision Theory to AI.

1982
1986

Judea Pearl
Horvitz et al.,

Belief Networks: Reasoning about the combination of
uncertain evidence.
Normative Expert Systems: One that act rationally
according to the laws of Decision Theory and do not try to
imitate human experts.

2. Problem Solving: Solution Trace in State-Space and in State-Transition Diagram

 [853]
 800

 350 503

 053 323 530 053

350 503 053 503 620 800 503 233

 350 602 323 800 251 530 503

 152 503 620 233 350 053 701

350 602 053 143 800 710 251 503

 053 440 152 503 350 413 701

 800 413 143 350 053 503 710 440

 Unidirectional transfer
 Bidirectional transfer
 800 Initial State
 440 Final State
 [853] Capacities of 3 Vessels

Figure 1. Problem Solving using State Space Approach: 853 Water Vessels Problem – Exhaustive Search & Heuristic Search©

V. Ashwini Kumar 18 March 2014

Figure 2. Problem Solving using State Transition Approach: 853 Water Vessels Problem – Exhaustive Search & Heuristic Search©

V. Ashwini Kumar 18 March 2014

800

053

503

350

530

323

233

620

251

602

152 143

413

710

701

440

 q0

 a (=1AB)

 q2 q1
 b (=2AC)

 q4 q3
 c (=1BC)

 q8 q6

Figure 3. Illustration of Recursion represented through State Transition Diagram for Towers of Hanoi
©

.

 Final States: 3 Pole – 3 Disc Case, 3 Pole – 2 Disc Case and 3 Pole – 1 Disc Case
Heuristic for Solution Path: Follow Recursion as shown above along the right most edge a-b-c of the Triangle.

V. Ashwini Kumar, Recursion Heuristic Search and Exhaustive Search in Towers of Hanoi

Figure 4. Heuristic Search: Recursive Sequence of Transitions for 2, 3 and 4 disc cases of Towers of Hanoi
©

.

1

b

 1

2 - - 2 1 - - 1 2 - - 2

A B C A B C A B C A B C

 q0 a q1 q3 c q6

1 1

2 2 1 1 2 2

3 - - 3 - 1 3 2 1 3 2 - - 2 3 1 2 3 1 - 3 - - 3

A B C A B C A B C A B C A B C A B C A B C A B C

1

2 2 1 1

3 3 3 3 1 1 1 1 2 2 2

4 - - 4 1 4 1 2 4 - 2 4 3 2 4 3 2 4 3 - 4 3 - - 3 4

A B C A B C A B C A B C A B C A B C A B C A B C A B C

Number of Transitions required to reach final state is given by: Hn = 2 Hn-1 + 1 = 2
n
 – 1.

Where n is the number of discs. If n = 64, Hn = 18, 446, 744, 073, 709, 551, 615

Heuristic Search Eight Slide Puzzle Problem

Heuristic: A technique that improves the average-case performance on a problem-solving task, but does not
necessarily improve the worst-case performance.

Heuristic Function: f(n): A function that help decide which node is the best one to expand next. This is a measure of the
goodness of a state. When written as sum of g(n), the depth factor and h(n), the heuristic evaluation of a node help to
explore promising paths to the goal, in this case, it is the number of tiles out of place (compared to goal state).

 Start State

 1

2 3

 4

Final
State

 Goal

2 8 3

1 6 4

7 5

2 8 3

1 4

7 6 5

2 8 3

1 6 4

 7 5

2 3

1 8 4

7 6 5

2 3

1 8 4

7 6 5

2 8 3

 1 4

7 6 5

 8 3

2 1 4

7 6 5

2 8 3

7 1 4

 6 5

2 3

1 8 4

7 6 5

 2 3

1 8 4

7 6 5

1 2 3

 8 4

7 6 5

1 2 3

8 4

7 6 5

1 2 3

7 8 4

 6 5

2 8 3

1 6 4

7 5

1. f(n) = g(n) + h(n) = 0 + 5 = 5

2. f(n) = g(n) + h(n) = 1 + 6 = 7
3. f(n) = g(n) + h(n) = 1 + 3 = 4
4. f(n) = g(n) + h(n) = 1 + 6 = 7

5. f(n) = g(n) + h(n) = 2 + 4 = 6
6. f(n) = g(n) + h(n) = 2 + 4 = 6
7. f(n) = g(n) + h(n) = 2 + 5 = 7

8. f(n) = g(n) + h(n) = 3 + 4 = 7
9. f(n) = g(n) + h(n) = 3 + 5 = 8
10. f(n) = g(n) + h(n) = 3 + 3 = 6
11. f(n) = g(n) + h(n) = 3 + 5 = 8

12. f(n) = g(n) + h(n) = 4 + 2 = 6

13. f(n) = g(n) + h(n) = 5 + 0 = 5
14. f(n) = g(n) + h(n) = 5 + 3 = 8

Figure 5. Heuristic Function evaluation to decide upon expansion of next nodes in State-Space of 8-Slide
 Puzzle Problem.

Algorithm: Heuristic for 8-Slide Puzzle Problem

1. Test h(n) = 0? If true go to 5, else go to 2.
2. Expand Nodes (States) in the next level of the Tree (breadth-wise).
3. Find f(n) for the above Nodes and compare to find the Node with minimum value.
4. Expand Node/s with minimum value.

Repeat 1 to 4 until Final (goal) State with f(n) is Minimum and h(n) = 0.
5. End.

Heuristics in Puzzles and Games

9 Side-Flipping Tiles Problem – SFT9

Each tile the board is numbered from 1 to 9. Tiles can be flipped side-ways on to the next adjacent tile.
Any one tile can be flipped at a time. Two or more tiles at a location is called compound
tile. A compound tile cannot be flipped. Face value of a compound tile is the value of the
tile at the top. Value of the board is the sum of the values of tiles seen on the board. In
this case, it is 1 + 2 + . . . + 9 = 45.

For example, after the tiles with values 1, 3, 5, 7 and 9 are flipped side-ways, we get a state
as shown in the figure. The value of the board is 1 + 3 + 5 + 9 = 18.

After the tiles 1, 2, 3, 8 and 3 are flipped side-ways, we get a state as shown in the figure.
The value of the board is 1 + 2 + 3 + 7 = 13.

How do we get to a minimum value of the board with minimum number of flips?
Will this heuristic work for board with random sequence of numbers (1-9) as its initial
state?

1 2 3

6 5 4

7 8 9

 1

5 3

 9

1 2

7 3

9 2 5

8 1 7

4 6 3

Triangular lamina in blue colour (hatched lines) has two sides with two different
numbers. Say, 1 and 2 respectively. Similarly, eight triangles on
the background square have different unique non-repeated numbers.
Triangular lamina in blue colour (hatched lines) can be made to flip on any of its side
to occupy next adjacent triangular area in the square on each flip.
The value of the triangular area in the square gets updated when the lamina
in blue colour leaves the space it occupied earlier.
How to get to a final state from a given state? State the update rule.
Is there a heuristic to improve search? State.

Analyze Tic-Tac-Toe Game and Present the Strategies and the corresponding Heuristics to win the Game

Types of Behavior (Strategy and Heuristic) of Players:

1. Play uniformly randomly (Unresponsive to opponent’s actions) – Generally losing the game
2. Play to block in every move – Generally Drawing the game
3. Play to win by not blocking, but blocking only in a losing situation – Some-times winning the

game, when the opponent’s behavior is of type 1 or 3.
Assumption: the players do not change the strategies during the game.

Types of games:

1-1 2-1 3-1

1-2 2-2 3-2

1-3 2-3 3-3

Notation: 11 means first player (1) playing the first (1) move. 24 means second player making the fourth
move.

Type of Game: 3-3 (First move of the first player cannot be the cell 5, this belongs to
Game Type 2)
The second player will win even if the first player marks in cell/position 3 or 9
instead of in cell/position 2.

The second player will win even if the first player marks in cell/position 8 or 9
instead of in cell/position 3.

The second player will win even if the first player marks in cell/position 9 instead of
in cell/position 8.

11
1

2

13
3

12
4

23
5

6

22
7

21
8

24
9

22
1

21
2

13
3

11
4

23
5

6

12
7

24
8

9

22
1

21
2

13
3

12
4

23
5

6

11
7

14
8

24
9

Game: Get-Away©

Experiment Number: 1
Is it possible to improve our ability to win as we play more games? If yes, how?

Two Players play this game. Each Player has ten cards. Each card has a unique number on one of its side. The
number is chosen from a range of numbers 0 to 9. The first Player chooses a card as per his/her wish and puts this
card on the table such that the number on it is not disclosed. Next, the second Player picks a card of his/her choice
and puts the card in the same way on the table. Now, the two Players disclose the numbers on their cards. They
calculate the absolute difference of these two numbers. If the absolute difference is less than or equal to 2, then
the first Player scores a point and pick next card of his choice from the cards he/she has and continue to play. Else,
there is no score for any player but the game moves on to the next Player to pick a card of his/her choice and
continue. A Match comprises of two players placing their cards in sequence and declaring the match point. A set of
Matches makes a Game. Both players maintain their cumulative match points by summing the points they
acquired throughout the Game. The Player who scores more cumulative match points of the two wins the Game.

Player A: Name: Roll No.:

Number
on the
Card

0 1 2 3 4 5 6 7 8 9

Chosen
Card No.

Player B: Name: Roll No.:

Number
on the
Card

0 1 2 3 4 5 6 7 8 9

Chosen
Card No.

Game No.: Threshold Number, n: 2

Match
No.

First Player Second Player Absolute
Difference

of Numbers,
D = |a - b|

D ≤ n
D ≤ 2

Player
Name
that
scored
the
Point

Match Point
for Player A

Match Point
for Player B

Name Number
 a

Name Number
b

T F

1
2
3
4
5
6
7
8
9

10
 Total Match Points

Types of Behavior (Strategy and Heuristic) of Players:
1. Both Players play uniformly randomly (Unresponsive to opponent’s actions) – Experiment 1
2. Player A always plays a number that is very close or the same as the last number disclosed by Player B as long as it is possible – Expt 2

Assumption: the players do not change the strategies during the game.

Game: Get-Away©

Experiment Number: 1.1
Is it possible to improve our ability to win as we play more games? If yes, how?

Two Players play this game. Each Player has Three cards. Each card has a unique number on one of its side. The
number is chosen from a set of numbers {1,2,3}. The first Player chooses a card as per his/her wish and puts this
card on the table such that the number on it is not disclosed. Next, the second Player picks a card of his/her choice
and puts the card in the same way on the table. Now, the two Players disclose the numbers on their cards. They
calculate the absolute difference of these two numbers. If the absolute difference is equal to 0, then the first
Player scores a point and pick next card of his choice from the cards he/she has and continue to play. Else, there is
no score for any player but the game moves on to the next Player to pick a card of his/her choice and continue. A
Match comprises of two players placing their cards in sequence and declaring the match point. A set of Matches
makes a Game. Both players maintain their cumulative match points by summing the points they acquired
throughout the Game. The Player who scores more cumulative match points of the two wins the Game.

Figure 1. Part of the Game Tree for the Problem Get-Away with Numbers from Set = {1,2,3} and
 Threshold Number n equal to Zero.

1 2

A0 B0

1 3

1 2

B0 A0

1

1 2

B0 A0

1 3

1 2

B0 A0

1 2

1 2

B0 A0

2

1 2

A1 B0

2 2

1 2

A0 B0

3 2

1 2

B1 A0

2 2

1 2

B0 A0

2 3

1 2

B1 A0

1 3

1 2

A0 B0

2 1

Game: Get-Away©

Experiment Number: 1.1
Is it possible to improve our ability to win as we play more games? If yes, how?

Two Players play this game. Each Player has Three cards. Each card has a unique number on one of its side. The
number is chosen from a set of numbers {1,2,3}. The first Player chooses a card as per his/her wish and puts this
card on the table such that the number on it is not disclosed. Next, the second Player picks a card of his/her choice
and puts the card in the same way on the table. Now, the two Players disclose the numbers on their cards. They
calculate the absolute difference of these two numbers. If the absolute difference is equal to 0, then the first
Player scores a point and pick next card of his choice from the cards he/she has and continue to play. Else, there is
no score for any player but the game moves on to the next Player to pick a card of his/her choice and continue. A
Match comprises of two players placing their cards in sequence and declaring the match point. A set of Matches
makes a Game. Both players maintain their cumulative match points by summing the points they acquired
throughout the Game. The Player who scores more cumulative match points of the two wins the Game.

Figure 2. Part of the Game Tree for the Problem Get-Away with Numbers from Set = {1,2,3} and
 Threshold Number n equal to Zero.

1 2

A0 B0

1 2

1 2

B0 A0

1

1 2

B0 A0

1 3

1 2

B0 A0

1 2

1 2

B0 A0

3

1 2

A0 B0

2 3

1 2

A0 B0

3 3

1 2

B0 A0

3 2

1 2

B1 A0

3 3

1 2

A0 B0

3 1

1 2

B1 A0

1 2

Game: Get-Away©

Experiment Number: 1.1
Is it possible to improve our ability to win as we play more games? If yes, how?

Two Players play this game. Each Player has Three cards. Each card has a unique number on one of its side. The
number is chosen from a set of numbers {1,2,3}. The first Player chooses a card as per his/her wish and puts this
card on the table such that the number on it is not disclosed. Next, the second Player picks a card of his/her choice
and puts the card in the same way on the table. Now, the two Players disclose the numbers on their cards. They
calculate the absolute difference of these two numbers. If the absolute difference is equal to 0, then the first
Player scores a point and pick next card of his choice from the cards he/she has and continue to play. Else, there is
no score for any player but the game moves on to the next Player to pick a card of his/her choice and continue. A
Match comprises of two players placing their cards in sequence and declaring the match point. A set of Matches
makes a Game. Both players maintain their cumulative match points by summing the points they acquired
throughout the Game. The Player who scores more cumulative match points of the two wins the Game.

Figure 3. Part of the Game Tree for the Problem Get-Away with Numbers from Set = {1,2,3} and
 Threshold Number n equal to Zero.

1 2

A1 B0

1 1

1 2

A1 B0

2

1 2

A1 B0

2 3

1 2

A2 B0

2 2

1 2

A1 B0

3

1 2

B0 A0

2 3

1 2

A3 B0

3 3

1 2

A1 B0

3 2

1 2

A2 B0

3 3

1 2

B0 A0

3 2

1 2

A3 B0

2 2

Game Tree [see Complete Game Tree document for this problem given separately]

Figure 5. Complete Game Tree for the Problem Get-Away© with Numbers from Set = {1, 2, 3} and
 Threshold Number n equal to Zero when Player A plays first. A wins in {(A3, B0), (A3, B0),
 (A1, B0), (A1, B0)}. B wins in {(B1, A0), (B1, A0)} and the Game ends in a draw 6 times.
 For details of the nodes, see Figure 4.

Game: Lake Diggers© – Team A and Team B

An arbitrary shaped Area comprising of squares of unit size has to be dug into a lake. There are n
number of diggers to do this job in a given number of units of time t. Where n is less than the number of
squares in the arbitrary shaped area. Both teams A and B dig separate lakes of identical shapes in plan
view to start with. Each digger can dig one cubic unit of volume in a unit time. Each digger can climb a
step of only one unit and no more while doing the job. Which-ever team digs a more voluminous lake
wins.
What is the maximum volume of the lake that can be dug? And what is the corresponding maximum
depth (z) of the lake and its coordinates (x, y).

Figure 6. Example Lake with its plan view of arbitrary shaped area in red line and its corresponding
 sectional elevation in blue line.

z

Search for Optimal Value (Maxima) in Discrete and Continuous Domains

Problem: A tray can be made from a square lamina by removing square pieces of same size at
all corners of the lamina and then folding the sides upright. If the size of the square lamina is 10
units x 10 units, and the corner square pieces can take any size from 1 unit x 1 unit onwards.
Find the maximum volume of the tray, and the dimensions of the tray with maximum volume.
Also if the corner squares can assume continuous values from 0 x 0 onwards, Find the ideal
maximum volume of the tray possible and the corresponding dimensions of the tray.

Solution: Let A = 10 be the side of the square lamina. Let c be the side of the square being
removed at all corners of the square lamina. Then the sides of the bottom of the tray will be a =
A – 2c = 10 – 2(c = 1, 2, …), while the height of the tray is c.

1. For various discrete values of c, discrete volume V is calculated:

c a a2 V = a2c

0 10 100 0

1 8 64 64

2 6 36 72

3 4 16 48

4 2 4 16

5 0 0 0

2. General equation of volume in continuous domain is V = (A – 2c)2c = A2c – 4Ac2 + 4c3.

The maxima is found by differentiating the above equation w.r.t c and equating it to zero.
dV/dc = A2 – 8Ac + 12c2 = 0.
Solving, we get c = A/6
Substituting this in V, we get V = [16/(36x6)]A3
For A = 10, V = 74.074

Algorithmic Time-Complexity Analysis
For various sizes of given square lamina

Solution Method 1 (Discrete) Solution Method 2 (Continuous)

For a square with side n, Total computational
units involved = (n/2 volume computations –
1) + ((n/2-1) -1) volume comparisons for
finding maximum value. T(n) = (n/2 – 1) + [(n/2
– 1) -1].

For a square with side n, Total computational
units involved = T(n) = 1 (constant).

100 74.074

80 72.000

60

40

20

 1 A/62 3 4 5
Plot Showing Continuous and Discrete Values of Volume for Maxima.

