
Natural Language Processing (NLP): written and oral
Involves processing of written text using computer models at lexical, syntactic, and semantic level.

Introduction:
1. Understanding (of language) – map text/speech to immediately useful form.
2. Generation (of language)

Sentence Analysis Phases:
1. Morphological Analysis: extracts root word from declined/inflection form of word after

removing suffices and prefixes.
2. Syntactic Analysis: builds a structural description of a sentence using MAP (Morphological

Analysis Process) based on grammatical rules, called Parsing.
3. Semantic Analysis: Creates a semantic structure by ascribing a literal meaning to sentence using

parse structure obtained in syntactic phase. It maps individual words into corresponding objects
in the knowledge base. Focus is on creation of target representation of the meaning of a
sentence.

4. Pragmatic Analysis: to establish meaning of a sentence in different contexts.
5. Discourse Analysis: Interpretation based on belief during conversation.

Grammars and Parsers:
Parsing: Process of analyzing an input sequence in order to determine its structure with respect to a given grammar.
Types of Parsing:

1. Rule-based parsing: syntactic structure of language is provided in the form of linguistic rules which can be coded as production rules
that are similar to context-free rules.
1. Top-down parsing: Start with start symbol and apply grammar rules in the forward direction until the terminal symbols of the

parse tree correspond to the words in the sentence.
2. Bottom-up parsing: Start with the words in the sentence in the sentence and apply grammar rules in the backward direction

until a single tree is produced whose root matches with the start symbol.
2. Statistical parsing: requires large corpora and linguistic knowledge is represented as statistical parameters or probabilities, which

may be used to parse a given sentence.
Types of Parsers:

1. Link Parser: system assigns to a sentence, a syntactic structure which consists of a set of labeled links connecting pairs of words.
There are two basic parameters in this representation, directionality and distance. In an SVO (Subject, Verb, and Object) language
like English, the verb would look left to form a subject link, and right to form an object link. Nouns would look right to complete
subject link, and right to form an object link.
Example:

SVO Language

Link Grammar Rules Interpretation of Rules

< 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑟 >:𝐷𝑒𝑡 + Determiner is defined as label Det connected to word to its
right in a sentence.

< 𝑁𝑜𝑢𝑛_𝑆𝑢𝑏 >: {Det-} & Sub+,

Subject noun is defined as label Sub connected to word on its
right in a sentence and connected to label Det on left in a
sentence.

< 𝑁𝑜𝑢𝑛_𝑂𝑏𝑗 >: {Det-} & Obj+,

Object noun is defined as the last word in a sentence and
labeled as Obj is connected to label Det on left in a sentence

< 𝑉𝑒𝑟𝑏 >: Sub- & {Obj+} Verb is defined as a word connected to label Obj on right in a
sentence and connected to label Sub on left.

The parsed sentence “the girl sings a song.” Appears as follows:
 + - - -Obj - - - - - - +
+ - - Det - - + - - Sub - - + + - - Det - - +
| | | | |
The:d girl:n sings:v a:d song:n

2. Chart Parser
3. Simple Transition Networks
4. Recursive Transition Networks
5. Augmented Transition Networks

Chart Parser
Chart parser store parses of intermediate constituents to be reused while trying alternative parsing path. A data
structure called chart is maintained to keep a record of the state of a bottom-up parse traversed. This structure is a
record of the positions of the words and new structure derived from the sentence. Chart also maintains the record
of rules that have been applied previously but are not complete. These rules are recorded as active arcs on the
chart. Chart parser provides exponential reductions of search space and enables coping with ambiguity in parsing.
It is compatible with a high degree of flexibility relative to search and control strategies.

Parsing by Chart Parser
There are two valid parse structures for the sentence, “the girls saw a man in the park with a cat” using grammar
defined below in Table 1 with propositional phrases. Both parse structures are shown in the figures 1 and 2 below.

Table 1. Sample Grammar
Grammar Rules Rule Number

< 𝑆 > → < 𝑁𝑃 >< 𝑉𝑃 > 1

< 𝑁𝑃 > → < 𝐷𝑒𝑡 >< 𝑁𝑜𝑢𝑛 > 2

< 𝑁𝑃 > → < 𝐷𝑒𝑡 >< 𝑁𝑜𝑢𝑛 >< 𝑃𝑃 > 3

< 𝑉𝑃 > → < 𝑉𝑒𝑟𝑏 >< 𝑁𝑃 > 4

< 𝑉𝑃 > → < 𝑉𝑒𝑟𝑏 >< 𝑁𝑃 >< 𝑃𝑃 > 5

< 𝑃𝑃 > → < 𝑃𝑟𝑒𝑝 >< 𝑁𝑃 > 6

 S

NP VP
 NP
 PP
 NP
 PP
 NP

Det Noun Verb Det Noun Prep Det Noun Prep Det Noun
The girls saw a man in the park with a cat

Figure 1. Parse Structure 1.

 S

NP VP
 NP
 PP
 NP
 PP
 NP

Det Noun Verb Det Noun Prep Det Noun Prep Det Noun
The girls saw a man in the park with a cat

Figure 2. Parse Structure 2.

Transition Network TN: a convenient representation of grammar as network of nodes and labeled arcs.
Parsing:
It starts with start node and traversal takes place through arcs. If the current word in the sentence is in the
category on that arc then move to the next state in TN and continue the process till Pop arc is reached. If there are
no words left in the sentence at Pop arc then it is assumed to be correctly parsed.

 Det Noun Pop

NP:

 Adj

Figure 1. Transition Network for Noun Phrase NP.

Table 1. Context-Free Grammar corresponding to TN.

<NP> → <Det><NP1 >

<NP1 > → < Adj ><NP1 >

<NP1 > → < Noun >

np1 np1 np1

Augmented Transition Network
Descriptive power of CFG is obtained by introducing recursion in network grammar allowing arc labels to refer to other
networks rather than word categories (as in TN). Such a network is called as Recursive Transition Networks (RTN). RTN with
registers and tests on these registers is an Augmented Transition Network (ATN).

Network
Representation for Natural Language Parsing

is
equivalent

to

Automata describing
Language

Transition Network, TN Finite State

Automata
Regular Languages

Recursive Transition Network, RTN Push Down
Automata (Stack)

Context Free
Languages

Augmented Transition Network, ATN
(arc is augmented with conditions and sequence of actions)

Turing Machine
(Tape/Register)

Recursively
Enumerable Languages

We can record sentence structure while parsing through ATN that can be used for further analysis. For instance, we can identify
one particular noun phrase as the syntactic subject (SUBJ) of a sentence and another NP as the syntactic object of the verb
(OBJ). Within noun phrase we might identify the determiner, adjective, head noun, and so on. Thus, the sentence, “Jack found a
bag”, when parsed using ATN may produce the following structure:

(S (SUBJ (NP NAME jack)

MAIN-V found
TENSE PAST
OBJ (NP DET a
HEAD bag
)
)
)

Figure 1. Parsed structure using ATN

 NP Verb NP Pop

 S:
 Jump

 Det 1 Noun 1 Pop
 2
 NP:
 Adj
 2 Name

Figure 2. Augmented Transition Network
Following registers and notations are used in the next page:

1. NUM* is the NUM register of the structure in *

2. NUMSUBJ is the NUB register of the structure in SUBJ

3. The value of the registers are often viewed as sets, and the intersection and union of sets are allowed to combine the
values of different registers. For the registers that may take a list of values, an append function is permitted

4. Append (ADJ, *) returns the list of adjectives.

s0 s1 s2 s3

np np1 np2

NP

Arc Test Actions Comments
np/1 None DET ← *

NUM ← * NUM*
Current token with its number in
DET and NUM registers

np/2 None NAME *
NUM NUM*

Current token with its number in
NAME and NUM registers

np1/1 NUM ∩ NUM*≠ φ
{then action is taken
else it fails}

HEAD ← *
NUM ← NUM ∩ NUM*

Assign current token to HEAD

np1/2 None ADJS ← Append (ADJS, *) Collect adjectives in the list and
store it in ADJS

S

s0/1 None SUBJ ← * Assign entire structure returned
from NP network to SUBJ

s1/1 NUMSUBJ ∩ NUM* ≠ φ
{then action is taken
else it fails}

MAIN_V ← *

NUM ← NUMSUBJ ∩ NUM*

Assign current token to

MAIN_V

s2/1 None OBJ ← * Assign entire structure returned
from NP network to OBJ

Table 1. Test and Actions of the Arc in ATN.

Step Node Position Arc followed Registers

1 s0 1 s0/1 -

2 np 1 np/1 DET ← the
NUM ← {sing.[plur}
HEAD ← dogs
NUM ← {plur}

3 np1 2 np/1
{check {sing.plur} ∩ {plur} ≠ φ-

4 np2 3 np2/1 return structure
SUBJ ←
 (NP(DET ← the
 HEAD ← dogs
 NUM ← {plur}
)
)

5 -
s1

3
3

s0/1 Succeeds
s1/1
{check {plur} ∩ {plur} ≠ φ-

MAIN_V ← love
NUM ← {plur}
MAIN_V ← love
NUM ← {plur}

6 s2 4 s2/1 OBJ ← *

7 np 4 np/2 NAME ← john
NUM ← {plur}

8 np2 5 np/1 return structure
OBJ←
(NP {NAME ← john
NUM ← {plur}
)

9 s3 5 s3/1 Succeeds return
(S
 SUB←
 (NP(DET ← the
 HEAD ← dogs,
 NUM ← {plur}
)
 (MAIN_V ← love,
 OBJ
 (NP(NAME← john
 NUM ← {plur})

Table 2. Trace of Parsing Sentence using ATN

Universal Networking Language
Project – Universal Networking Language (UNL) was initiated by Institute of Advanced Studies in 1995 by United Nations University (UNU).
UNL is an electronic language that provides a uniform representation of a natural language. The objective of UNL is generic, language-neutral
formalism in systematic and coordinated way. UNL is a controlled language which has predefined vocabulary, building rules in an electronic
content mark-up language. It basically provides a platform for language neutral mark-up language. UNL has many applications such as: Machine
translation, multilingual information service, Information retrieval system, Search engine, and Expert systems etc.

UNL consists of:
1. Vocabulary (Universal Words (UW))

2. Syntax (Relations & Attributes)

3. Semantics (UNL Knowledge Base)

Example: UNL representation of sentence, “Monkey eats bananas.”.

[S]
[org]
 Monkey eats a mango
[/org]
[unl]
 [W]
 eat(icl>do).@present.@entry:00
 monkey(icl>animal).@generic:01
 banana(icl>food:).@generic:02
 [/W]
[R]
agt(eat(icl>do).@entry, monkey(icl>animal).@generic)
obj(eat(icl>do).@present.@entry,banana(icl>food).@generic)
[/R]
[/unl]
[S]

Note: the relation ‘icl’ (inclusion) is used to allow properties to be inherited from upper UWs so that a UW can be deductively inferred from
existing UW.

Universal Words
UWs are made up of a roman character string followed by a list of constraints. For example, dog is represented as
dog(icl>animal, where animal is upper UW. General definition of UW (BNF like grammar) is given below:

Universal Word UW Definition Meta symbol Interpretation
<UW> ::= <Head Word> [<Constraint List] < > For non-technical symbol or a variable

<Head Word> ::= <character> . . . “ ” for enclosed string is literal characters

<Constraint List> ::= “(“<Constraint> *“,” <Constraint>+”)” ::= for defined as

<Constraint> ::= <Relation Label> ,“>”- <UW> *<Constraint List+ . . . | for disjunction, “or”

<Relation Label> ::= “agt” | “and” |”adj”|”icl”| . . . [] for optional element

<character> ::= “A”| . . . |”Z”|”a”| . . .|0| . . . |9|”_”|” “|”#”|”!”|
 “$”|”%”|”=”|”^”|”~”|”|”|”@”|”+”|”-“|”<”|”>”|”?”

{ } for alternative element
. . . three dots for repetition more than one
 time

Types of UWs:
1. Basic UW: English word with no restrictions.
2. Restricted UW: with constraint list attached. Example, ‘state(icl>situation)’ is a sense of ‘state’ that denotes a kind of situation.

3. Extra UW: mot found in English but used. Example, samba(icl>dance) – a kind of dance.

Binary Relation

Definition Interpretation
<Binary Relation> ::= <Relation Label>
 *“:” <Compound UW-ID>+ “(“,<UW1> “:”UW-ID1]>}
 *“:” <Compound UW-ID1>]”.”{<UW2> “:”<UW-ID2>}
 *“:” <Compound UW-ID2>+ “)“

Relation Label is a string of two or three lower-case alphabetic
characters taken from the closed list.
Compound UW-ID is a string of two digits used to identify each
compound UWs.
Compound UW is a group of binary relations (called ‘Hyper-Nodes’).

The UNL System consists of the Language Servers and basic tools. The language server resides in the network. UNL Dictionary stores concepts

represented by the language words. The grammar to define words of the language is followed. The knowledge base of the UNL system is

continually being expanded.

mailto:.@present.@entry:00
mailto:.@generic:01
mailto:.@generic:02
mailto:.@entry
mailto:.@generic
mailto:.@present.@entry,banana(icl%3efood).@generic)

