Code No. 6420 / N

FACULTY OF ENGINEERING

B.E. 4/4 (ECE) I – Semester (New) (Main) Examination, November 2013

Subject : Microwave Engineering

Time : 3 hours

Max. Marks : 75

3

Note: Answer all questions from Part–A. Answer any FIVE questions from Part–B.

PART – A (25 Marks)

1. What are waveguides? What is the fundamental difference between the propagation in waveguides and propagation in transmission lines or free space.

2.	Sketch E and H field distributions for TM ₁ wave between parallel planes.	2
3.	The TE_{10} mode is described as the dominant mode in rectangular waveguides. What property does it have which makes it dominant? Show the electric field distribution at the mouth of a rectangular waveguide carrying this mode.	3
4.	Write down the expression for a Quality Factor (Q) of rectangular resonator operating in its dominant mode.	2
5.	Why is a Hybrid E-H plane Tee referred to as magic Tee?	2
6.	List the properties of S-matrix.	3
7.	Distinguish between 'O' type and 'M' type microwave tubes.	2
8.	What are the differences between TWT and Klystron Amplifiers?	3
9.	A Gunn diode is working in transit time modes at 12 GHz. The domain charges move at a speed of 10^7 cm/s. Calculate the length of the device?	3
10	. Mention some specific applications of IMPATT diode.	2
		2
	PART – B (50 Marks)	-
11	 PART – B (50 Marks) .a) Derive an expression for the power transmitted between two parallel conducting planes in the TE₁ mode. 	6
11	 PART – B (50 Marks) .a) Derive an expression for the power transmitted between two parallel conducting planes in the TE₁ mode. b) Prove that for small attenuations, the attenuation factor 	6
11	PART – B (50 Marks) .a) Derive an expression for the power transmitted between two parallel conducting planes in the TE ₁ mode. b) Prove that for small attenuations, the attenuation factor $\alpha = \frac{Power \cos t \text{ in guide per unit length}}{2 \text{ power injected}}$	6
11	PART – B (50 Marks) .a) Derive an expression for the power transmitted between two parallel conducting planes in the TE ₁ mode. b) Prove that for small attenuations, the attenuation factor $\alpha = \frac{Power \cos t \text{ in guide per unit length}}{2 \text{ power injected}}$.a) Prove by Maxwell's equations that it is impossible for TEM wave to be propagated inside a conducting tube, whether cylindrical or rectangular.	6 4 6
11	 PART – B (50 Marks) .a) Derive an expression for the power transmitted between two parallel conducting planes in the TE₁ mode. b) Prove that for small attenuations, the attenuation factor \$\alpha = \frac{Power \cost in guide per unit length}{2 \prower injected}\$ a) Prove by Maxwell's equations that it is impossible for TEM wave to be propagated inside a conducting tube, whether cylindrical or rectangular. b) A rectangular air filled copper waveguide with a 0.9 inch X0.4 inch cross section and 12 inch length is operated at 9.2 GHz with a dominant mode. Find cutoff frequency, guide wave length, phase velocity and characteristic impedance. 	6 4 6

..2